Классификация двигателей внутреннего сгорания
Autoservice-ryazan.ru

Автомобильный портал

Классификация двигателей внутреннего сгорания

Двигатели внутреннего сгорания. Классификация, основные типовые конструкции

Двигатели внутреннего сгорания (ДВС) — наиболее распростра­ненный тип тепловых двигателей, в которых процессы получения тепловой энергии и преобразования ее в механическую работу про­странственно совмещены. Достигается это совмещение благодаря тому, что получение теплоты от сжигания топлива осуществляется в полостях с ограниченным объемом, в результате чего расширяю­щиеся продукты сгорания создают избыточное давление. Такое давление реализуется в виде механической работы, затрачиваемой на перемещение поршней, турбинных лопаток или вытекающей струи газа. В соответствии с типом элемента, перемещаемого дав­лением газа, различают поршневые, турбинные и реактивные дви­гатели.

Благодаря компактности, высокой экономичности и надежнос­ти поршневые ДВС получили наиболее широкое применение в раз­личных отраслях промышленности, строительства и пр. Класси­фикация поршневых ДВС показана на рис. 1.

Процесс преобразования тепловой энергии в механическую ра­боту поршневыми двигателями осуществляется циклически.

Рабочим циклом называют совокупность последовательно про­текающих в цилиндре двигателя термодинамических процессов, в результате совершения которых происходит однократное преобра­зование тепловой энергии, выделенной при сжигании порции топ­лива в цилиндре двигателя, в механическую работу по перемеще­нию поршня. Рабочий цикл состоит из следующих процессов: за­полнения цилиндра воздухом или приготовленной в карбюраторе горючей смесью, сжатия воздуха или горючей смеси, подачи и распыливания топлива в дизелях (смесеобразование), воспламенения, сгорания и тепловыделения, расширения продуктов сгорания и вы­пуска отработавших газов.

Рис. 1. Общая классификация двигателей внутреннего сгорания.

Поршень в цилиндре двигателя совершает возвратно-поступа­тельные движения между определенными (фиксированными) по­ложениями, которые называются соответственно внутренней и наружной мертвыми точками (ВМТ и НМТ). Перемещение поршня между мертвыми точками в одном направлении называют ходом поршня, а часть цикла, совершаемую при движении поршня между мертвыми точками, — тактом. Название такта дается по основному процессу, протекающему при ходе поршня. При перемещении поршня объем внутренней полости цилиндра меняется.

Характерными объемами при этом принимаются следующие:

– объем внутренней полости цилиндра при положении поршня в ВМТ, называемый объемом пространства сжатия и обозначаемый Vc;

– объем внутренней полости цилиндра при положении поршня в НМТ, называемый полным объемом цилиндра и обозначаемый Vt;

– объем, описываемый поршнем между мертвыми точками, кото­рый называется рабочими объемом цилиндра и обозначается Vs.

Отношение полного объема цилиндра к объему пространства сжатия называют степенью сжатия, ее обозначают е и находят по формуле

(1)

Степень сжатия показывает, во сколько раз уменьшается объем цилиндра над поршнем, т. е. сжимается заряд в цилиндре при перемещении поршня из НМТ в ВМТ.

Рабочий цикл в ДВС может совершаться за два или четыре хода поршня. В соответствии с этим двигатели называют двух­тактными и четырехтактными.

В зависимости от способа приготовления горючей смеси, полу­чаемой при смешивании топлива с воздухом, различают двигатели с внутренним смесеобразованием — дизельные и внешним — кар­бюраторные двигатели.

По способу воспламенения рабочей смеси, состоящей из топлива и воздуха, ДВС делят на основные группы: с принудительным воспламенением от постороннего источника (двигатели карбюра­торные и газовые); с воспламенением от сжатия (дизели).

Карбюраторные двигатели работают на легком жидком топли­ве (бензине), дизели — на тяжелом жидком топливе (дизельном топливе и других фракциях нефти).

В карбюраторных двигателях горючая смесь образуется вне ци­линдра. В цилиндры поступает готовая смесь (пары бензина с воз­духом), которая во время такта сжатия сжимается в 6-9 раз и затем поджигается электрической искрой.

Дизели работают по иному принципу, чем карбюраторный дви­гатель: в цилиндры поступает не горючая смесь, а чистый воздух, который сжимается в 12-20 раз. При таком сжатии давление в камере сжатия повышается, а сам воздух при этом нагревается. В сжатый и нагретый воздух через специальную форсунку впрыс­кивается дизельное топливо, которое распыляется на мельчайшие капельки и частично испаряется, образуя с воздухом горючую смесь. Эта смесь воспламеняется от нагретого при сжатии воздуха без какого-либо постороннего зажигания и сгорает.

Количественные соотношения топлива и воздуха (топливо и воздух образуют горючую смесь) определяются окислительно-вос­становительными реакциями, протекающими между химическими элементами топлива и кислородом воздуха. В большем количестве воздуха можно сжечь большее количество топлива и, следова­тельно, получить большее количество теплоты и механической ра­боты, поэтому в дизельных двигателях для повышения мощности при неизменных геометрических параметрах цилиндров может ис­пользоваться наддув, т. е. подача воздуха под давлением.

Поршневой ДВС состоит из группы неподвижных и подвижных узлов и ряда обслуживающих систем. Принципиальные схемы од­ноцилиндрового четырехтактного дизеля с наддувом и двухтактного дизеля показаны на рис. 2, 3 и 4.

К основным неподвижным узлам относятся фундаментная рама с подшипниками коленчатого вала, на которую устанавливаются станина и втулки цилиндров. Сверху цилиндры закрываются крыш­ками. Двигатели с помощью лап монтируются на подмоторной раме 13 (см. рис. 2, а). Втулки цилиндров устанавливаются, как правило, в едином блоке, называемом блоком цилиндров 5, и закрывается единой для всего ряда цилиндров крышкой, которую называют головкой блока цилиндров 11. К главным подвижным деталям ДВС относятся поршень 7, шатун 3 и коленчатый вал 2.

Рис. 2. Двигатель внутреннего сго­рания (дизель):

а — принципиальная схема двигате­ля:

1 – нижний картер (поддон); 2 – коленчатый вал; 3 – шатун; 4 – верхний картер; 5 – блок цилиндров; 6 – нагнетатель (наддувочный аг­регат); 7 – поршень; 8 – впускной клапан; 9 -форсунка; 10 – выпускной клапан; 11 -голов­ка блока цилиндров; 12 – топливный насос высокого давления; 13 – подмоторная рама;

б – индикаторная диаграмма Р — V; в – диаграмма фаз газораспределения:

φ — угол опережения открытия впускного кла­пана; φз — угол запаздывания закрытия впуск­ного клапана; φв — угол опережения открытия выпускного клапана; φк — угол запаздывания закрытия выпускного клапана; φт — угол опе­режения впрыска топлива; φк — угол пере­крытия клапанов;

г — схема работы четырехтактного дизеля

Рис. 3. Схема работы двухтактного дизеля со встречно-движущимися поршнями и прямоточно-щелевой продувкой:

1,6 – верхний и нижний поршни; 2 – продувочные окна; 3 – форсунки; 4 – камера сгорания; 5 – выхлопные окна

Рис. 4. Двухтактный дизель с П-образной поперечной продув­кой: а – схема работы двухтактного дизеля; б – диаграмма фаз газораспределения; в – индикаторная диаграмма: zут – рас­ширение; тп – свободный выпуск; паа’ – продувка; а’а” – на­полнение; а”с – cжатие; czy – горение; х – начало впрыска топлива; у -окончание подачи топлива в камеру сгорания

Каждый ДВС имеет следующие системы:

– систему газообмена, управляющую органами наполнения цилиндров свежим зарядом воздуха и очистки его от отработавших газов;

– топливную систему, служащую для подачи и подготовки топлива к сгоранию в цилиндре;

Современные ДВС оснащаются также дополнительными системами и устройствами, которые улучшают мощностные и другие показатели. К ним относят системы наддува, предпускового подо­грева и автоматики, шумо- и виброгасящие устройства, гасители крутильных колебаний на коленчатом валу и т. п.

К основным параметрам дизелей относят номинальную мощ­ность, число цилиндров, тактность, диаметр цилиндра, ход поршня, степень сжатия, массогабаритные размеры и др.

Рассмотрим принцип работы четырехтактного ди­зеля с наддувом (см. рис. 2, г), у которого один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала.

Первый такт — такт впуска свежего воздуха — происходит при перемещении поршня от ВМТ к НМТ. Впускной клапан 8 открыт, а выпускной 10 — закрыт. С началом движения поршня от ВМТ к НМТ объем рабочего пространства цилиндра 5 увеличи­вается, а давление в нем уменьшается и становится меньше атмос­ферного в дизелях без наддува (нагнетатель 6 отсутствует).

При наличии наддува воздух поступает в цилиндр под давлением, со­здаваемым компрессором (наддувочным агрегатом). При отсут­ствии наддува свежий заряд воздуха поступает в цилиндр за счет разрежения. Для достижения максимального наполнения цилинд­ра впускной клапан открывается несколько раньше, в точке г с определенным углом опережения, равным 15-35° угла поворота коленчатого вала до ВМТ, и закрывается в точке а с некоторым углом запаздывания φз, равным 10-30° поворота вала после НМТ (см. рис. 2, в).

Второй такт — такт сжатия — начинается при обратном ходе поршня НМТ к ВМТ при закрытых клапанах. В цилиндре образуется замкнутое пространство, объем которого при движении к ВМТ уменьшается. За счет уменьшения объема происходит сжа­тие свежего заряда воздуха, в результате чего повышаются его давление до 3-4 МПа и температура — до 600-700 °С, которая становится достаточной для самовоспламенения впрыскиваемого топлива.

При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо с некоторым опережением φт, равным 10-30° угла поворота коленчатого вала до ВМТ, для образования однород­ной смеси и ее воспламенения вблизи ВМТ.

Третий такт — такт расширения, при котором топливо сгорает и происходит резкое повышение давления и температуры рабочего тела. Максимальное давление при сгорании топлива у малооборот­ных дизелей 5-7 МПа, у средне- и высокооборотных 6-12 МПа, у дизелей с наддувом 10-15 МПа. Температура газа в конце сго­рания топлива тем выше, чем больше давление, и колеблется в пределах 1600-2000 °С.

Высокое давление при расширении рабочего тела вызывает дви­жения поршня от ВМТ к НМТ, в результате чего совершается полезная работа.

Четвертый такт — такт выпуска, при котором в конце рабоче­го хода до прихода поршня в НМТ открывается выпускной кла­пан 10 и начинается процесс свободного выпуска газов из цилинд­ра в выпускной трубопровод. Свободный выпуск осуществляется за счет перепада давления в цилиндре и в выпускной системе. Температура отработавших газов при этом 350-500 °С и давле­ние 0,3-0,4 МПа.

Опережение открытия выпускного клапана 10 в точке 6 соот­ветствует φв = 20-50° угла поворота коленчатого вала до НМТ. Поршень, двигаясь вверх, выталкивает отработавшие газы из ци­линдра, освобождая цилиндр для новой порции свежего воздуха.

Закрывается выхлопной клапан в точке r при φк = 10-30° за ВМТ. Сумма двух углов φ + φк называется углом перекрытия клапанов. При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечислен­ной ранее последовательности.

Рассмотрим принцип работы двухтактного дизеля (см. рис. 3) со встречно-движущимися поршнями и прямоточно-щелевой продувкой.

В цилиндре дизеля имеется по два поршня, движущихся в про­тивоположных направлениях и образующих при этом в средней части цилиндровой гильзы (между днищами поршней) одну об­щую камеру сгорания. Подвод продувочного воздуха к цилиндрам и выпуск отработанных газов осуществляются через окна в ци­линдровых гильзах, которые открываются и закрываются поршня­ми. Верхние поршни управляют впуском воздуха через продувочные окна, а нижние — выпуском отработанных газов через выпуск­ные (выхлопные) окна.

Рабочий цикл в двухтактном дизеле совершается за два такта, т. е. за один оборот коленчатого вала, и осуществляется следую­щим образом.

Читать еще:  Не схватывает двигатель

Первый такт начинается при движении поршней навстречу друг другу (см. рис. 3) от их НМТ к ВМТ. Сначала нижний поршень перекрывает выпускные окна, а затем верхний поршень — продувочные окна. Указанная очередность закрытия окон объяс­няется тем, что нижний коленчатый вал по углу поворота опере­жает верхний на 12°. До закрытия выпускных окон воздух, посту­пающий под давлением, вытесняет отработавшие газы из цилинд­ра. Когда окна закрываются, воздух через открытые впускные окна продолжает поступать в цилиндр.

Более позднее закрытие впуск­ных окон по сравнению с выпускными способствует дозаправке цилиндра свежим воздухом до давления, почти равного давлению продувочного воздуха, т. е. происходит так называемый наддув. Это позволяет увеличивать весовой заряд воздуха в цилиндре, а, следовательно, сжечь большее количество топлива и получить большую мощность.

Как только окна закрылись, начинается сжатие воздуха в ци­линдре. Когда поршни приблизятся к ВМТ, в камеру сгорания впрыскивается топливо, которое в среде нагретого при сжатии до высокой температуры воздуха воспламеняется.

В начале второго такта происходит сгорание топлива, что при­водит к повышению давления газов в цилиндре до 8-9 МПа. Под действием этого давления поршни расходятся от ВМТ, газы расши­ряются и их давление понижается. В конце такта расширения ниж­ний поршень открывает выпускные окна и начинается выхлоп от­работавших газов. Немного позднее, когда верхний поршень откро­ет впускные окна, начинается процесс продувки цилиндра свежим воздухом. Этот процесс продолжается до момента закрытия выпуск­ных окон в начале первого такта, а далее цикл повторяется.

Аналогично совершается рабочий цикл двухтактного дизеля с П-образной поперечной продувкой (см. рис. 4).

Не нашли то, что искали? Воспользуйтесь поиском:

Классификация и назначение ДВС

Как известно, на сегодняшний день существует большое количество различных типов двигателей внутреннего сгорания. Указанные типы силовых агрегатов являются источником энергии для транспортных средств, механизмов и агрегатов, а также отличаются по производительности, конструкции, по назначению и т.д.

В наших предыдущих статьях мы уже рассматривали всевозможные виды двигателей, которые устанавливаются на автомобили. Далее мы намерены поговорить о том, какая существует классификация двигателей внутреннего сгорания.

Общая классификация двигателей

Начнем с того, что двигатели внутреннего сгорания классифицируют по ряду признаков и особенностей. Прежде всего, силовые установки отличаются по своему назначению. ДВС бывают:

  • стационарного типа;
  • двигатели на транспорте;

Также силовые установки отличаются по типу используемого топлива. Двигатели могут работать на:

  • жидком и легком топливе (бензин, дизтопливо, спирт);
  • жидком тяжелом топливе (мазут, соляровое масло, газойль)
  • газовом топливе;
  • использовать горючее комбинированного типа, когда в двигателе одновременно используется жидкое топливо и газ (например, газодизель);
  • применяется сразу несколько видов топлива для многотопливного ДВС (агрегат работает как на бензине, так и на керосине и т.д.);

Также двигатели внутреннего сгорания можно разделить по тому, как реализовано преобразование тепловой энергии в результате сжигания топлива в механическую полезную работу. Двигатели бывают:

  • поршневыми ДВС (сгорание и преобразование тепловой энергии в механическую работу происходит в цилиндре двигателя;
  • газотурбинные двигатели (в таких двигателях топливо сгорает в особой камере сгорания, после тепловая энергия преобразуется в механическую на лопатках турбинного колеса;
  • двигатели комбинированного типа, в которых топливо сгорает в цилиндрах поршневого двигателя, при этом такой двигатель является генератором газа. Это значит, что тепловая энергия только частично превращается в механическую в цилиндре, а также частично преобразование происходит на лопатках турбинного колеса (например, турбопоршневой двигатель).

Еще двигатели внутреннего сгорания отличаются по способу смесеобразования. Силовые агрегаты бывают:

  • моторы с внешним смесеобразованием (рабочая смесь образуется не в цилиндре). Если просто, это карбюраторные бензиновые и газовые двигатели, а также инжекторные двигатели с впрыском топлива во впускной коллектор.
  • установки с внутренним смесеобразованием (на такте впуска в цилиндр отдельно подается воздух, затем прямо в камеру сгорания впрыскивается топливо, а рабочая смесь образуется уже в самом цилиндре). Такое смесеобразование происходит в дизельных двигателях, в бензиновых установках с искровой системой зажигания и газовых двигателях, где реализована подача горючего в цилиндр перед началом сжатия.

Также двигатели классифицируют и по способу воспламенения рабочей топливно-воздушной смеси. Смесь может воспламеняться:

  • от внешнего источника, которым выступает электрическая искра на свече зажигания;
  • от сжатия, где смесь воспламеняется от высоких температур во время сильного сжатия воздуха и топлива в цилиндре (например, дизельный ДВС);
  • агрегаты с форкамерно-факельным зажиганием. В таких форкамерных моторах имеется две камеры сгорания. В первой (малой) камере смесь воспламеняется от искры, затем дальнейшее воспламенение основного заряда в основной (большой) камере происходит благодаря распространению фронта пламени из малой камеры.
  • двигатели, которые работают по принципу первичной подачи небольшого количества жидкого топлива (самовоспламеняется от сжатия), в результате чего удается поджечь и основной заряд, который состоит из газового топлива (газодизельный двигатель).

Что касается наддува, двигатели бывают компрессорными и турбированными, а также могут сразу иметь оба решения. Моторы с турбокомпрессором получают газовую турбину, которая работает благодаря воздействию отработавших газов.

Агрегаты с механическим компрессором конструктивно оснащены устройством, которое приводится в действие от двигателя, забирая у него часть энергии. Комбинированный тип предполагает, что двигатель одновременно имеет и турбокомпрессор, и механический нагнетатель.

Еще следует упомянуть различия по способу регулирования подачи топлива в цилиндры при изменении нагрузки. Существуют двигатели с регулированием смеси по:

В первом случае речь идет об изменении состава смеси с учетом нагрузок и режимов работы ДВС. Во втором случае состав не меняется, при этом подается только большее или меньшее количество. В двигателях со смешанным регулированием меняется как состав смеси, так и количество, что зависит от нагрузок на агрегат.

Напоследок отметим, что классификация автомобильных двигателей затрагивает поршневые ДВС (бензиновые, дизельные и газовые), карбюраторные и инжекторные, с внешним смесеобразованием или прямым впрыском топлива, с воспламенением от искры или с воспламенением от сжатия.

Также на некоторых авто можно встретить газотурбинные, форкамерные или роторно-поршневые двигатели, однако сегодня такие агрегаты нельзя назвать массовыми применительно к автоиндустрии.

Основные конструктивные отличия ДВС

Если говорить о главных отличиях в конструкции поршневых двигателей, различные силовые агрегаты делятся на рядные горизонтальные и вертикальны по расположению цилиндров. Также двигатели бывают V-образными, оппозитными и т.д.

Еще агрегаты бывают однопоршневыми двигателями, когда в одном цилиндре имеется один поршень и рабочая полость. При этом также встречаются ДВС, в которых поршни движутся противоположно в одном цилиндре, а рабочая полость находится между двумя поршнями. Также бывают моторы двойного действия, в которых по обеим сторонам от поршня имеются рабочие полости.

При этом существуют варианты роторного двигателя, где поршень-ротор не движется, а планетарное движение совершает корпус ДВС. Еще одной разновидностью можно считать агрегаты, в которых движется как корпус, так и сам ротор.

Что в итоге

Итак, выше были рассмотрены назначение и классификация двигателей внутреннего сгорания. При этом данная информация наглядно демонстрирует широчайшую сферу применения поршневых ДВС.

С учетом тех или иных особенностей конкретного типа ДВС такие агрегаты используются как на транспортных средствах, так и в качестве генераторов, устройств привода всевозможных агрегатов и механизмов.

Разновидности ДВС и принцип действия теплового двигателя. Рабочий цикл и такты, преимущества и недостатки. Основные и альтернативные виды топлива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Какие существуют самые маленькие двигатели внутреннего сгорания. Для чего используются миниатюрные ДВС. Самый маленький дизель в мире: особенности.

Особенности и отличия оппозитного двигателя от других поршневых ДВС. Преимущества оппозитного мотора, минусы данной конструкции, нюансы обслуживания.

Двигатель внутреннего сгорания: устройство и принцип работы

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

  • блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Читать еще:  Компрессия в цилиндрах двигателя

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Принципы работы ДВС

— Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

— Принцип работы четырёхтактного двигателя

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
  • Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

— Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
  • Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

— Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
  • Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
  • Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

— Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:

  • Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

— Выхлопная система

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

— Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Классификация и назначение ДВС

Как известно, на сегодняшний день существует большое количество различных типов двигателей внутреннего сгорания. Указанные типы силовых агрегатов являются источником энергии для транспортных средств, механизмов и агрегатов, а также отличаются по производительности, конструкции, по назначению и т.д.

В наших предыдущих статьях мы уже рассматривали всевозможные виды двигателей, которые устанавливаются на автомобили. Далее мы намерены поговорить о том, какая существует классификация двигателей внутреннего сгорания.

Общая классификация двигателей

Начнем с того, что двигатели внутреннего сгорания классифицируют по ряду признаков и особенностей. Прежде всего, силовые установки отличаются по своему назначению. ДВС бывают:

  • стационарного типа;
  • двигатели на транспорте;

Первые широко используются в качестве приводного механизма для различных насосов, генераторов, и т.д. Второй тип можно встретить на автомобилях, мотоциклах, судах, самолетах, поездах и других видах воздушных, наземных и водных транспортных средств. Отметим, что данная классификация не затрагивает реактивные, водородные и ракетные двигатели, распространяясь на массовые агрегаты.

Также силовые установки отличаются по типу используемого топлива. Двигатели могут работать на:

  • жидком и легком топливе (бензин, дизтопливо, спирт);
  • жидком тяжелом топливе (мазут, соляровое масло, газойль)
  • газовом топливе;
  • использовать горючее комбинированного типа, когда в двигателе одновременно используется жидкое топливо и газ (например, газодизель);
  • применяется сразу несколько видов топлива для многотопливного ДВС (агрегат работает как на бензине, так и на керосине и т.д.);
Читать еще:  На свечах красный налет

Также двигатели внутреннего сгорания можно разделить по тому, как реализовано преобразование тепловой энергии в результате сжигания топлива в механическую полезную работу. Двигатели бывают:

  • поршневыми ДВС (сгорание и преобразование тепловой энергии в механическую работу происходит в цилиндре двигателя;
  • газотурбинные двигатели (в таких двигателях топливо сгорает в особой камере сгорания, после тепловая энергия преобразуется в механическую на лопатках турбинного колеса;
  • двигатели комбинированного типа, в которых топливо сгорает в цилиндрах поршневого двигателя, при этом такой двигатель является генератором газа. Это значит, что тепловая энергия только частично превращается в механическую в цилиндре, а также частично преобразование происходит на лопатках турбинного колеса (например, турбопоршневой двигатель).

Еще двигатели внутреннего сгорания отличаются по способу смесеобразования. Силовые агрегаты бывают:

  • моторы с внешним смесеобразованием (рабочая смесь образуется не в цилиндре). Если просто, это карбюраторные бензиновые и газовые двигатели, а также инжекторные двигатели с впрыском топлива во впускной коллектор.
  • установки с внутренним смесеобразованием (на такте впуска в цилиндр отдельно подается воздух, затем прямо в камеру сгорания впрыскивается топливо, а рабочая смесь образуется уже в самом цилиндре). Такое смесеобразование происходит в дизельных двигателях, в бензиновых установках с искровой системой зажигания и газовых двигателях, где реализована подача горючего в цилиндр перед началом сжатия.

Также двигатели классифицируют и по способу воспламенения рабочей топливно-воздушной смеси. Смесь может воспламеняться:

  • от внешнего источника, которым выступает электрическая искра на свече зажигания;
  • от сжатия, где смесь воспламеняется от высоких температур во время сильного сжатия воздуха и топлива в цилиндре (например, дизельный ДВС);
  • агрегаты с форкамерно-факельным зажиганием. В таких форкамерных моторах имеется две камеры сгорания. В первой (малой) камере смесь воспламеняется от искры, затем дальнейшее воспламенение основного заряда в основной (большой) камере происходит благодаря распространению фронта пламени из малой камеры.
  • двигатели, которые работают по принципу первичной подачи небольшого количества жидкого топлива (самовоспламеняется от сжатия), в результате чего удается поджечь и основной заряд, который состоит из газового топлива (газодизельный двигатель).

Добавим, что также поршневые двигатели делятся по способу осуществления рабочего цикла. Моторы бывают 2-х и 4-х тактными. Силовые агрегаты могут быть атмосферными (впуск воздуха происходит благодаря разрежению в цилиндрах) и с наддувом, когда воздух нагнетается принудительно под давлением.

Что касается наддува, двигатели бывают компрессорными и турбированными, а также могут сразу иметь оба решения. Моторы с турбокомпрессором получают газовую турбину, которая работает благодаря воздействию отработавших газов.

Агрегаты с механическим компрессором конструктивно оснащены устройством, которое приводится в действие от двигателя, забирая у него часть энергии. Комбинированный тип предполагает, что двигатель одновременно имеет и турбокомпрессор, и механический нагнетатель.

Еще следует упомянуть различия по способу регулирования подачи топлива в цилиндры при изменении нагрузки. Существуют двигатели с регулированием смеси по:

Классификация, общее устройство и основные параметры двигателя

Двигателем называется машина, преобразующая тот или иной вид энергии в механическую работу. На автомобилях устанавливаются двигатели, использующие тепловую энергию, которая выделяется при сгорании жидкого или газообразного топлива. Двигатели, у которых сгорание топлива происходит внутри замкнутой рабочей полости (камера сгорания),называются двигателями внутреннего сгорания. Если у таких двигателей преобразование теплоты в работу связано с перемещением поршней в цилиндрах, эти двигатели называются также поршневыми.

Автомобильные поршневые двигатели классифицируются по нескольким признакам:

  • по способу смешивания топлива с воздухом и воспламенению смеси с внешним смесеобразованием и воспламенением от электрической искры (карбюраторные двигатели) и внутренним смесеобразованием и воспламенением от сжатия (дизели);
  • по числу цилиндров – одно, двух и многоцилиндровые (четырех, шести, восьмицилиндровые);
  • по числу тактов, составляющих рабочий процесс четырех и двухтактные;
  • по виду применяемого топлива – бензиновые, на дизельном топливе, на газовом топливе, многотопливные;
  • по расположению цилиндров – с расположением цилиндров в один ряд (рядные) и «V» -образные, у которых цилиндры расположены в два ряда под углом один к другому;
  • по способу охлаждения – с жидкостным и воздушным охлаждением.

Различные типы двигателей внутреннего сгорания имеют одинаковое общее устройство. Каждый из них имеет кривошипно-шатунный механизм, механизм газораспределения, систему охлаждения, смазочную систему, систему питания, а карбюраторные двигатели, кроме того, и систему зажигания.

Рис. 1 Схема поршневого двигателя внутреннего сгорания: 1-цилиндр; 2-поршень; 3-коленчатый вал

Принцип действия поршневого двигателя внутреннего сгорания заключается в следующем. В закрытом сверху цилиндре 1 (рис.1) размещается поршень 2, соединенный через шатун с кривошипом коленчатого вала 3. Сверху в цилиндре расположено два клапана – впускной и выпускной. При перемещения поршня вниз через открывающийся впускной клапан цилиндр заполняется атмосферным воздухом (у дизелей) или горючей смесью (у карбюраторных двигателей). При движении поршня вверх поступивший воздух или горючая смесь сжимается. При подходе поршня в верхнее положение в сжатый воздух впрыскивается топливо (у дизелей) или подается электрическая искра (у карбюраторных двигателей); вследствие чего смесь топлива и воздуха сгорает и выделяется теплота. Газы, образовавшиеся при сгорания нагреваются, их давление и температура возрастают. Под действием давления газов поршень перемещается вниз и через шатун поворачивает коленчатый вал, совершая полезную работу. При дальнейшем перемещении поршня вверх отработавшие газы удаляются из цилиндра в атмосферу через открывающийся выпускной клапан. При перемещении поршня из одного крайнего положения в другое коленчатый вал совершает поворот вокруг , своей оси на 180°. Для совершения полного оборота поршень должен переместиться один раз вниз и один раз вверх. Крайние положения “поршня в цилиндре называются мертвыми точками, так как скорость поршня в этих , положениях равна нулю. Верхняя мертвая точка (ВМТ) – положение поршня, наиболее удаленное от оси коленчатого вала. Нижняя мертвая точка (НМТ) – положение поршня, наименее удаленное от оси коленчатого вала. Ход поршня – это расстояние, которое проходит поршень при перемещении от ВМТ к НМТ.

Камерой сгорания называется пространство в цилиндре над поршнем при его положении в ВМТ (на рис.1 обозначено Vc). Рабочим объемом цилиндра (Vh) называется объем, который освобождается поршнем при его перемещении от ВМТ к НМТ. Рабочим объемом двигателя или литражом называется сумма работы объемов Всех его цилиндров, измеряется в , кубических сантиметрах или литрах. Полный объем цилиндра – сумма его рабочего объема и объема камеры сгорания ( Va=Vh+Fc ). Степенью сжатия двигателя называется отношение полного объема к объему камеры сгорания ( E=Va/Vc ). Эта величина показывает, во сколько раз уменьшается объем воздуха или рабочей смеси при перемещении поршня от НМТ к ВМТ.

Карбюраторные двигатели имеют степень сжатия в пределах 6. ..10, дизели – 15 . 20. Чем выше степень сжатия двигателя, тем эффективнее в нем теплота превращается в работу. У карбюраторных двигателей степень сжатия ограничена свойствами топлива. При большой степени сжатия у этих двигателей возможно самовоспламенение рабочей смеси и взрывной характер горения (детонация), что снижает их работоспособность и экономичность. У дизелей с повышением степени сжатия возрастают нагрузки на деталь двигателя.

Классификация двигателей внутреннего сгорания

По способу осуществления рабочего цикла

Классификация

Любой двигатель внутреннего сгорания основан на принципе использования повторяющегося рабочего цикла, за который происходит превращение энергии топлива в кинетическую энергию, заставляющую механизм работать. По особенностям данного цикла можно выделить несколько категорий двигателей.

  • Двухтактные модели. Весь рабочий цикл состоит всего из двух тактов или точек, которые проходит поршень под действием давления, вызываемого сгоранием топлива.
  • Четырёхтактные модели. Принцип работы представленных моделей отличается тем, что цикл представляет собой повторение четырёх действий поршня.
  • С наддувом и без него. Существуют варианты с дополнительной системой увеличения давления в рабочей части, а также модели без данной функции.

По способу воспламенения топлива

Классификация

Поскольку от способа возгорания топлива зависит качество работы механизма, были разработаны различные варианты, среди которых можно выделить следующие:

  • С принудительным зажиганием. Такой двигатель имеет в своей конструкции специальный механизм, воспламеняющий топливо.
  • С воспламенением от сжатия. В данной модификации топливная смесь загорается самостоятельно под действием высокого давления в камере.

По способу образования топливной смеси

Классификация

Перед началом цикла в двигатель должна попасть топливная смесь, подготовленная к использованию. В связи с этим существуют различные варианты образования топливной смеси.

  • С внешним образованием. Такие модели подразумевают подготовку топлива перед входом в основную часть, горючая смесь смешивается с воздухом и по специальным трубкам попадает в двигатель.
  • Система с внутренним образованием подразумевает поступление в камеру цилиндра топлива и воздуха по отдельным трубкам. Только после их поступления происходит подготовка смеси.

По способу охлаждения

Классификация

Чтобы во время работы двигатель не сломался от перегрева, были придуманы специальные охлаждающие системы. В настоящее время известны следующие модификации:

  • С жидкостной системой охлаждения. Здесь за основу берётся жидкость, которая циркулирует вокруг основных элементов, охлаждая их.
  • С воздушным способом охлаждения. Наиболее простым в эксплуатации является именно этот вариант, поскольку охлаждение в представленных моделях осуществляется за счёт циркуляции воздуха.

По расположению цилиндров

Классификация

Поскольку одним из ключевых компонентов в двигателях являются цилиндры, различают несколько модификаций механизмов по их расположению.

  • С расположенными в один ряд цилиндрами конструкции представляют собой наиболее простую конфигурацию устройства.
  • Цилиндры, расположенные в два ряда с различным углом наклона, являются более сложной системой по сравнению со своим предшественником.
  • От трёх и более цилиндров, расположенных в несколько рядов. Подобные системы используются в сложных конструкциях и установках, требующих высокой производительности.

По основному предназначению

Классификация

В современном мире область применения ДВС очень обширна, однако, основное разделение по назначению предоставлено ниже:

  • Стационарные двигатели применяются на стройках и крупных промышленных объектах. Они чаще всего крепятся к фундаменту и выполняют роль подъёмников.
  • Транспортные двигатели чаще всего используются в движущихся объектах, устройствах и изобретениях. Наиболее привычным примером является машина, автобус, корабль, самолёт.

Разновидности двигателей по типу

Классификация

Существуют и другие классификации ДВС, среди которых есть деление по определённому типу модификации механизма.

  • Поршневые модели работают за счёт поступательных движений поршней, расположенных внутри конструкции.
  • Карбюраторные модели подразумевают использование внешнего способа образования смеси при прохождении через карбюратор.
  • Дизельные двигатели отличаются прежде всего тем, что работают на более тяжёлом топливе по сравнению с бензиновыми вариантами.
  • Инжекторные двигатели являются наиболее распространённым вариантом с установленной автоматической системой впрыска топлива.
  • Роторно-поршневые варианты осуществляют работу по преобразованию энергии за счёт действия газов на роторную конструкцию.
  • Газотурбинные варианты используют принцип преобразования поступающей энергии за счёт ротора с особой конфигурацией.
Ссылка на основную публикацию
Adblock
detector