Потеря напряжения при пуске двигателя
Autoservice-ryazan.ru

Автомобильный портал

Потеря напряжения при пуске двигателя

При запуске двигателя падает напряжение: причины и диагностика

Падение напряжения при запуске двигателя является достаточно распространенной проблемой независимо от типа силового агрегата, а также марки, модели или класса автомобиля. Проявляется снижение напряжения зачастую таким образом, что в момент начала вращения стартера резко тускнеет или гаснет свет фар, теряет яркость подсветка приборной панели, отключается и перезапускается магнитола и т.д.

Причин для такой неисправности может быть несколько, причем как очевидных и легко устранимых, так и скрытых. В этой статье мы поговорим о том, почему понижается напряжение во время пуска двигателя, а также как обнаружить и устранить неисправность.

Низкое напряжение при запуске двигателя: как найти причину

Начнем с того, что далеко не всегда виновником всех бед является АКБ, хотя достаточно часто сниженное напряжение возникает в результате проблем с аккумулятором. В любом случае, перед началом диагностики автомобиля по части электрики необходимо иметь специальный автотестер (мультиметр).

При этом важно, чтобы прибор достаточно точно измерял те или иные параметры. Как правило, функционал устройства должен позволять измерить напряжение, сопротивление, силу тока. Параллельно в рамках поиска неполадок, связанных с напряжением, нужно учитывать и частоту вращения коленвала.

Проверка аккумулятора автомобиля

Итак, при диагностике необходимо начинать с проверки аккумулятора, а также автомобильного генератора. Оценку состояния АКБ проводят путем подключения тестера к клеммам батареи. В норме напряжение на батарее при учете отсутствия нагрузки (все потребители отключены) должно составлять не менее 12.6 В. Снижение данного показателя означает, что имеет место частичный недозаряд или с самим аккумулятором возникли проблемы (сульфатация пластин, выкипание электролита и т.д.).

Также можно измерить напряжение вольтметром, включая для нагрузки габаритные огни и дальний свет фар. Обычно ток разряда под такой нагрузкой (при учете установленных галогеновых ламп накала) составляет около 5–6 А, а напряжение составляет около 11.5 В. Если это так, значит АКБ рабочая и проблему нужно искать дальше.

Быстрая диагностика стартера

Если говорить о напряжении непосредственно в момент запуска (когда крутит стартер), напряжение на клеммах АКБ не должно оказаться ниже отметки 9.5 В. В случаях, когда это происходит на исправном и заряженном аккумуляторе, можно утверждать, что возникла неисправность стартера. Другими словами, стартер при работе требует слишком много электрической энергии, чего в норме быть не должно.

Добавим, что для замера тока необходим амперметр, который подключается в разрыв. При этом делать разрывы цепи в авто крайне не рекомендуется, также далеко не все амперметры способны корректно работать и фиксировать высокие показатели, которые возникают в момент запуска ДВС.

По этой причине для таких задач лучше иметь специальный мотортестер. Главный плюс устройства в том, что точность замеров достаточно высокая, а также нет необходимости подключать тестер в разрыв, так как прибор имеет отдельные датчики. Эти датчики накладные, причем работают даже через изоляцию проводов. Указанные элементы способны эффективно фиксировать изменения напряженности магнитного поля, когда по проводам в цепи проходит ток одной или другой величины.

Оценка работоспособности автомобильного генератора

В тех случаях, когда АКБ предварительно проверили и зарядили от ЗУ, а также со стартером все в порядке, но проблема продолжает проявляться, в диагностике нуждается генератор. Дело в том, что генератор подзаряжает аккумулятор уже после запуска двигателя. Если необходимой дозарядки не происходит, тогда батарея быстро садится, интенсивно теряя заряд уже после пары запусков.

Затем можно поднять обороты мотора, после чего также промеряется напряжение тока заряда. Например, при повышении оборотов двигателя до 2 тыс. об/мин. напряжение заряда в норме составляет от почти 14 до 14.5 В. Далее работу генератора следует оценивать под нагрузкой. Для этого снова потребуется включать свет фар.

Напряжение в норме после включения света и габаритов должно быть не ниже 13.8. Если показатель падает до 13 и ниже, тогда начинать проверку нужно с приводного ремня генератора. Если ремень генератора прослаблен или проскальзывает, тогда причина очевидна. В случае, когда ремень хорошо натянут, неполадки возникли в самом генераторе или его реле-регуляторе.

Как правило, реле-регулятор является одним из наиболее распространенных проблемных элементов на разных автомобилях. Поверить реле-регулятор можно следующим способом:

  • необходимо замерить напряжение на работающем двигателе;
  • после того, как показатель дойдет до 14.5 В, заряд должен прекратиться;
  • если напряжение растет и далее, реле-регулятор требует замены (на некоторых авто допускается регулировка);

Еще добавим, что зарядный ток после того, как двигатель был запущен, составляет от 6 до 10А. В дальнейшем на работающем ДВС заряд в норме падает до 0 (при условии, что дополнительные потребители электроэнергии отключены).

Что в итоге

Как видно, причин, по которым при запуске двигателя падает напряжение, может быть много. Выше были перечислены только основные моменты, на которые следует обратить внимание в рамках первичной диагностики.

Еще следует отметить, что необходимо также проверять состояние клемм АКБ, а также «массу», которая со временем имеет свойство покрываться коррозией и налетом в точках крепления.

Кстати, что касается массы, многие автолюбители для устранения ряда подобных проблем делают так называемую «разминусовку» двигателя. Данная процедура позволяет добиться стабильной работы электрооборудования, а также минимизирует потери и улучшает работу двигателя благодаря постоянной и мощной искре на свечах зажигания.

В чем заключается и для чего необходима разминусовка силового агрегата. Основные преимущества данного решения, установка дополнительной массы своими руками.

Стартер щелкает и/или жужжит, но мотор не крутится. Главные причины поломок стартера, диагностика и устранение неисправностей своими руками.

Почему стартер может не работать после поврота ключа в замке зажигания. Основные причины неисправностей стартера: бендикс, тяговое реле, щетки, обмотка.

Что делать, если стартер крутит, при этом двигатель не схавтывает. Проверка системы питания, зажигания, электронного управления ДВС и т.д. Рекомендации.

Почему стартер нормально крутит, но двигатель не схватывает, не заводится. Основные причины неисправности, проверка систем топливоподачи, зажигания. Советы.

Принцип работы и устройство автомобильного генератора. Составные элементы генератора переменного тока в автомобиле: ротор, статор, обмотки, регулятор.

Расчет сетей на колебания напряжения при пуске электродвигателя

Любую электрическую сеть следует проверять на колебания напряжения при пуске двигателя.

В момент пуска асинхронного короткозамкнутого двигателя на его зажимах допускаются колебания напряжения Ut > –30 %, если начальный момент приводного механизма не превышает 1/3 номинального момента электродвигателя. При этом на зажимах любого из числа остальных работающих двигателей напряжение не должно снижаться больше чем на 20 % от Uн сети. Колебания напряжения в сети при пуске двигателя определяют по приближенной формуле:

(41)

где Zс – полное сопротивление сети, Ом. При пуске электродвигателя, подключенного к линии, запитанной от трансформатора, полное сопротивление сети равно:

где ZЛ – полное сопротивление ВЛ; Zтр – полное сопротивление трансформатора

(43)

где Uк % – напряжение короткого замыкания трансформатора.

Полные сопротивления короткого замыкания трансформаторов 10/0,4 кВ равны:

Sтр-ра, кВ∙А
Zтр, Ом 0,65 0,41 0,32 0,163 0,103 0,072

При пуске электродвигателя от синхронного генератора полное сопротивление сети

где Zг – полное сопротивление генератора, равное

(45)

где ОКЗ – отношение короткого замыкания генератора [1]; Zэп – полное сопротивление короткого замыкания асинхронного двигателя, Ом, определяемое уравнением

(46)

где Кп – кратность пускового тока (приводится в паспортных данных электропривода).

Задача 2.18

В какой точке сети, изображенной на рис. 2.19, можно подключить асинхронный короткозамкнутый двигатель мощностью 25 кВт, с номинальным напряжением 380 В и кратностью пускового тока К = 5,5. Сопротивления участков сети сведены в табл. 2.6. Мощность трансформатора 100 кВ∙А.

Рис. 2.19. Схема сети 10 и 0,38 кВ

Приводим сопротивление линии 10 кВ участка сети А-ТП к напряжению 0,38 кВ:

(47)

Результаты расчетов сопротивлений участков ВЛ 0,38 кВ

Участок сети Марка провода Активное сопротивление провода rо, Ом/км Индуктивное сопротивление провода xo, Ом/км Полное сопротивление провода Zо, Ом/км Сопротивление участка Z, Ом
А-ТП АС35 0,77 0,352 0,85 4,25
ТП-1 А50 0,58 0,341 0,68 0,075
1-5 А16 1,8 0,377 1,84 0,386
1-2 А35 0,83 0,352 0,9 0,9
2-3 А16 1,8 0,377 1,84 0,184
2-4 А16 1,8 0,377 1,84 0,147

Сопротивление трансформатора мощностью 100 кВ∙А

Определяем сопротивление двигателя при пуске по формуле (46):

Определяем колебания напряжения Vt, %, при запуске двигателя в точке 5 (см. рис. 2.19):

Двигатель в точке 5 не запустится.

Проверяем запуск двигателя в точке 1 (см. рис. 2.19):

Двигатель в точке 1 запустится.

Проверяем запуск двигателя в точке 2 (см. рис. 2.19):

Двигатель в точке 2 запустится.

Проверяем запуск двигателя в точке 3 (см. рис. 2.19):

Двигатель в точке 3 не запустится.

Проверяем запуск двигателя в точке 4:

Двигатель в точке 4 не запустится.

2.9. Определение оптимальных надбавок трансформаторов
и допустимой потери напряжения в сети

В соответствии с ГОСТ 13109–97 норы отклонений напряжения у потребителей допускаются ± 5 % от номинального в течение 95 % времени суток.

Читать еще:  Сравнение бензинового двигателя и дизельного

Допустимую максимальную потерю напряжения в сети следует определить исходя из указанных норм отклонений напряжения с учетом элементов сети и режимов нагрузки.

Генератор обеспечивает либо постоянное напряжение на шинах на 5 % выше номинального напряжения сети, либо режим встречного регулирования напряжения в пределах от 0 до +10 %.

Трансформаторы, регулируемые вручную на холостом ходу (ПБВ), дают надбавку напряжения от 0 до +10 % ступенями по 2,5 %, если они применяются для понижения напряжения, и надбавку от 0 до –10 %, если их использовать для повышения напряжения.

Надбавки напряжения трансформаторов с регуляторами под нагрузкой (РПН) зависят от мощности и напряжения трансформаторов.

Потеря напряжения в трансформаторах определяется формулой:

(48)

где Smax – расчетная мощность; Sн – номинальная мощность трансформатора; Uка%, Uкр% – активная и реактивная потери напряжения короткого замыкания трансформатора:

(49)

(50)

где Рм – потери короткого замыкания; потери в меди трансформатора; Uк% – напряжение короткого замыкания, %.

Обычно в трансформаторах, применяемых в сельских сетях, потеря напряжения при номинальной нагрузке составляет 4…5 %, что и принимают при определении допустимой потери напряжения в сети.

Допустимую потерю напряжения в сети находят для двух режимов нагрузки: максимального и минимального. При этом в режиме максимальной нагрузки рассматривают наиболее удаленный потребитель, отклонения напряжения у которого не должны превышать –5 %.

В режиме минимальных нагрузок, которые составляют 25 % от максимальных, проверяют ближайший потребитель – у него отклонения напряжения не должны превышать +5 % от номинального напряжения.

Задача 2.19

Определить допустимую максимальную потерю напряжения в сети, питающейся от сельской электростанции, и выбрать надбавки на трансформаторах (рис. 2.20) для двух случаев:

на генераторе поддерживается режим постоянного напряжения, равного Uг = 1,05Uн линии;

генератором осуществляется встречное регулирование напряжения с надбавкой напряжения +6 % при максимальной нагрузке; +1 % – при минимальной нагрузке.

Рис. 2.20. Схема сети

Составляем таблицу потерь и отклонений напряжения для первого случая (постоянное напряжение на генераторе) (табл. 2.7).

Потери напряжения в трансформаторах при максимальной нагрузке принимаем равными 4 %, а при минимальной – 1 %, что соответствует действительным значениям.

В таблицу вносим известные величины. Во-первых, это значения отклонений напряжения у потребителей, которые по ГОСТ 13109–97 равны ± 5 % от Uн. Уровни напряжения на генераторе, %, от Uн. Потери напряжения в трансформаторе (тоже, %, от Uн). Наибольшая надбавка на трансформаторе 0,4/10 кВ равна +0 %, поэтому выбираем ее.

Значения отклонений и потерь напряжения в сети

Элементы сети Отклонения напряжения при постоянном напряжении на генераторе Отклонения напряжения при встречном регулировании напряжения на генераторе
ТП2 ТП1 ТП2 ТП1
Нагрузка, % Нагрузка, %
Генератор +5 +5 +5 +5 +6 +1 +6 +1
Трансформатор 0,4/10 кВ
надбавка
потери –4 –1 –4 –1 –4 –1 –4 –1
Линия 10 кВ –2 –0,5 –6 –1,5
Трансформатор 0,4/10 кВ
надбавка +2,5 +2,5 +7,5 +7,5 +5 +5
потери –4 –1 –4 –1 –4 –1 –4 –1
Линия 0,38 кВ –2,5 –2 –4,5 –8
Потребитель –5 (в) +5 (а) –5 (d) +3 (с) –5 (в) +5 (а) –5 (d) +4 (с)

Для удаленного понижающего трансформатора ТП 10/0,4 (№ 2) принимаем надбавку +2,5 %. Тогда суммарная допустимая потеря напряжения в линиях 10 и 0,38 кВ в режиме максимальной нагрузки и при отклонении –5 % составляет:

ΔUВЛ10 и 0,38 = +5 + 0 – 4 + 2,5 – 4 – (–5) = + 4,5 %.

Распределяем потерю напряжения между линиями 10 и 0,38 кВ приблизительно поровну, но, предполагая потери на ВЛ 0,38 кВ несколько большими, так как ее сечение меньше, заносим их в табл. 2.7 (2 % и 2,5 %). Эти потери напряжения соответственно заносят со знаком минус. Затем проверяем отклонения напряжения у ближайшего потребителя в точке «а» схемы (см. рис. 2.20) в период минимальных нагрузок. Поскольку минимальная нагрузка при таких расчетах всегда принимается 25 % от максимальной [2], то потери напряжения в отдельных элементах сети снизятся в 4 раза по сравнению с режимом максимальных нагрузок.

Подставив в таблицу значения потерь напряжения в трансформаторах и линии 10 кВ (в линии 0,38 кВ потери напряжения равны нулю, так как потребитель «а» подключен непосредственно к шинам трансформатора), проверяем отклонения напряжения у потребителя «а»:

Vа 25 = +5 – 1 – 0,5 + 2,5 – 1 = +5 %.

Определим допустимую потерю напряжения в линии 0,38 кВ для ближайшего ТП № 1. Задавшись надбавкой трансформатора 0 %, находим допустимую потерю напряжения в линии 0,38 кВ:

Проверяем отклонения напряжения у потребителя (см. рис. 2.20) в режиме минимальных нагрузок:

Принимаем надбавку на удаленном трансформаторе +7,5 %. Тогда суммарная допустимая потеря напряжения в линиях 10 и 0,38 кВ составит:

ΔUВЛ 10 и 0,38 100 = +6 – 4 + 7,5 – 4 – (–5) = 10,5 %.

Распределяем потерю напряжения между линиями 10 и 0,38 кВ как –6 и -4,5 %. Проверяем отклонение напряжения у потребителя «а» в режиме минимальных нагрузок:

Vа 25 = +1 – 1 – 1,5 + 7,5 – 1 = +5 %.

Принимаем надбавку трансформатора ближайшего ТП1 +5 %.

Тогда допустимая потеря напряжения в линии 0,38 кВ

ΔUВЛ 0,38 100 = +6 – 4 + 5 – 4 – (–5) = +8 % (вносим в таблицу со знаком минус).

Проверяем отклонения напряжения у ближайшего потребителя в точке «с» в режиме минимальных нагрузок:

Vс 25 = +1 – 1 + 5 – 1 = +4 % 100 = +2 % и V 25 = 0 % от номинального напряжения. Расчет провести для случаев без регулятора напряжения и при его наличии. Регулятор напряжения под нагрузкой (РПН) имеет шесть ступеней регулирования в сторону увеличения и в сторону снижения по 1,5 % каждая для трансформаторов с высшим напряжением 35 В (±6×1,5 %).

Потери напряжения в линии 35 кВ заданы равными 4 %:

Рис. 2.21. Схема сети

Составляем таблицу отклонения напряжения (табл. 2.8).

Элементы сети Отклонения напряжения, %, при нагрузке, %
Без регулятора С регулятором
Шины 35 кВ +2 +2
ВЛ 35 кВ –4 –1 –4 –1
РТП 35/10 кВ
потери –4 –1 –4 –1
надбавка +5 +5 +5 +5
Регулятор (РПН) +1,5×4 –1,5×2
ВЛ 10 кВ –1,2 –0,3 –6,5 –1,6
ТП 10/0,4 кВ
потери –4 –1 –4 –1
надбавка +2,5 +2,5 +7,5 +7,5
ВЛ 0,38 кВ –1,3 –7
Потребитель –5 +4,2 –5 +4,9

Для случая без регулятора получаем допустимую потерю напряжения в линиях 10 и 0,38 кВ

ΔUв 100 = +2 – 4 – 4 + 5 – 4 + 2,5 – (–5) = 2,5 %.

Принимаем потери напряжения в линиях 10 кВ – 1,2 % и 0,38 кВ – 1,3, т.е. очень малые:

V 25 = –1 – 1 + 5 – 0,3 – 1 + 2,5 = +4,20

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Определение возможности пуска электродвигателя

При проектировании иногда необходимо выполнять проверку на возможность запуска короткозамкнутого двигателя при заданных параметрах электрической сети. Лучше предусматривать устройство плавного пуска или частотный преобразователь, но электромагнитный пускатель дешевле.

Методика проверки сводится к оценке снижения напряжения от трансформатора до электродвигателя.

Проблема заключается в том, что при пуске у двигателя возникает пусковой ток, который в 4-8 раз больше номинального тока. Пусковой ток создает дополнительную потерю напряжения в сети, а это может привести к тому, что двигатель будет не в состоянии провернуть вал с нагрузкой, поскольку развиваемый двигателем вращающий момент изменяется пропорционально квадрату напряжения. Кроме этого, в результате резкого падения напряжения могут остановиться другие электродвигатели, питающиеся от этой сети.

Нормальный пуск двигателя, возможен в том случае, если начальный момент электродвигателя будет больше на 10% пускового момента сопротивления приводимого механизма.

Чтобы выполнить проверку запуска двигателя, достаточным условием является сравнение пусковых (начальных) моментов электродвигателя и приводимого механизма.

Условие пуска двигателя

где – напряжение на клеммах электродвигателя в начальный момент пуска в долях от номинального напряжения;

mп=Мпуск/Мном – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (по каталогу);

mмех=Ммех/Мном –требуемая кратность пускового момента приводимого механизма;

Кз – коэффициент загрузки электродвигателя;

1,1 – коэффициент запаса;

dUдоп% — дополнительные потери напряжения (%) в сети от питающего трансформатора и в трансформаторе до клемм электродвигателя механизма;

Кi – кратность пускового тока при номинальном напряжении на клеммах электродвигателя (по каталогу);

Iномд – номинальный ток электродвигателя (по каталогу), А;

Uном – номинальное напряжение трансформатора;

rтр, xтр – активное и индуктивное сопротивление трансформатора, отнесенное к обмотке низшего напряжения;

r, x – активное и индуктивное сопротивление кабельной линии;

cosfном – номинальное значение коэффициента мощности;

mп=Мпуск/Мном – кратность пускового (начального) момента электродвигателя (по каталогу);

sном – номинальное скольжение;

dUс% — суммарная потеря напряжения в линии от шин питающего трансформатора до двигателя механизма и в трансформаторе без учета пуска двигателя (%);

Читать еще:  Как почистить сетку

dUс=0,08Uном – при отсутствии данных мощности трансформаторов и их загрузке;

При определении mмех можно руководствоваться следующими данными:

Компрессоры центробежные и поршневые – 0,4.

Насосы центробежные и грузовые – 0,4.

Станки металлообрабатывающие – 0,3.

Другие электродвигатели будут устойчиво работать, при снижении напряжения от пуска другого электродвигателя, если максимальные моменты останутся больше моментов приводимых механизмов.

Работа другого двигателя

mmax=Мmax/Мном – кратность максимального момента электродвигателя (по каталогу).

Подставляя значения в эти формулы, мы узнаем, выдержит ли питающая сеть с трансформатором пуск двигателя, а также можно проверить, не отключится ли в этот момент другой работающий двигатель.

В ближайшее время планирую на основе этих формул создать программу для быстрой проверки пуска электродвигателя. Двигатели малой мощности нет смысла проверять. Где-то упоминалось отношение мощности трансформатора к мощности двигателя, при котором должна выполняться данная проверка (найду напишу).

На форуме я выкладывал программу по проверке возможности пуска двигателя, но там какие-то проблемы со шрифтами. Возможно у вас получится ее запустить, поскольку она сделана под DOS.

Расчет сети по потере напряжения при пуске наиболее мощных и удаленных электроприемников

Участковая сеть, выбранная по условию нормального режима, должна быть проверена на возможность пуска наиболее мощных и электрически удалённых двигателей без «опрокидывания», исходя из допустимых колебаний напряжения на их зажимах.

Для возможности пуска электродвигателей величина напряжения на их зажимах должна быть не менее: для комбайнов и самоходных вагонов – [1].

Суммарные потери напряжения в режиме пуска электродвигателей равны:

где – потери напряжения от электроприемников, включенных к моменту пуска двигателя с учетом возможности их работы в режиме холостого хода;

– потеря напряжения из-за пускового тока двигателя.

Для расчетов преобразуется к виду:

где – расчетный пусковой ток электродвигателя;

– число нагрузок без запускаемого двигателя;

– активное и индуктивное сопротивление цепи запускаемого двигателя;

– коэффициент мощности при пуске двигателя, принимаем [1].

Если электроприемники, входящие в число (n-1), работают в режиме холостого хода, то их расчетные токи , уменьшаются в 2 раза ().

Для удобства расчетов составим таблицу, включающую в себя перечень приводов, режим работы и их мощности [1]. Мощность привода хода самоходного вагона рассчитываем при второй скорости.

Таблица 5 – Расчетная мощность приводов на момент пуска режущих дисков.

Режим работы и группа

Расчетная мощность, кВт.

Режим работы и группа

Расчетная мощность, кВт.

184 (4 привода х 46)

Привод конвейера и маслонасоса СВ

Вентиляция кабины комбайна

АП-4 на комбайне

Расчетный пусковой ток двигателя определяется по формуле

где In.ном. – номинальный пусковой ток двигателя;

Un.p. – расчетное напряжение на зажимах двигателя при пуске;

Uном.д. – номинальное напряжение двигателя.

Напряжение на зажимах двигателя при пуске определяется следующим выражением:

Расчет будем вести для пуска наиболее мощных и удаленных электроприемников для каждой из РП, а именно для двигателей привода режущих дисков первой и второй групп электроприемников комбайна Урал-10А соответственно.

Схемы замещения к расчету потерь напряжения при пуске электродвигателей привода режущих дисков I и II группы комбайна Урал-10А приведены на рисунках №4 и №5.

Рис. 5. Схема замещения к расчету потерь напряжения при пуске электродвигателя привода режущих дисков I группы комбайна Урал-10А

Рис. 6. Схема замещения к расчету потерь напряжения при пуске электродвигателя привода режущих дисков II группы комбайна Урал-10А

Запуск двигателя режущих дисков I группы электроприемников комбайна Урал-10А.

Определим расчетный ток трансформатора КТП-1 и фидерного кабеля до РП-1. Расчетные мощности указаны в таблице № 5.

Расчетный ток для магистрального кабеля до потребителей первой группы комбайна Урал – 10А:

Определим потери напряжения в трансформаторе КТП-1:

Потери напряжения в фидерном кабеле №1 и АВ:

Потери напряжения в пускателе и магистральном кабеле №1:

Суммарные потери напряжения:

Запуск двигателя режущих дисков II группы электроприемников комбайна Урал-10А.

Определим расчетный ток трансформатора КТП-2 и фидерного кабеля до РП-2:

Расчетный ток для магистрального кабеля до потребителей второй группы комбайна Урал – 10А:

Определим потери напряжения в трансформаторе КТП-2:

Потери напряжения в фидерном кабеле №2 и АВ:

Потери напряжения в пускателе и магистральном кабеле №2:

Суммарные потери напряжения:

Таблица 6 – Определение потерь напряжение на зажимах двигателя к моменту их пуска.

Расчетные участки и точки

Расчетный ток участка, кабеля I’р, А

Потери напряжения ДU’НОРМ в участках сети, В

Запуск двигателя режущих дисков I группы электроприемников комбайна Урал-10А.

Суммарные потери напряжения для точки К4 = 12,46 В.

Запуск двигателя режущих дисков II группы электроприемников комбайна Урал-10А.

Суммарные потери напряжения для точки К9 = 21,49 В.

В целях упрощения расчетов определим отдельно значения АК для цепей запускаемых двигателей.

Расчетная формула для трансформаторов:

Расчетная формула для кабелей:

где – коэффициент мощности при пуске двигателей ([1]).

Внутреннее сопротивление атематического выключателя и пускателя приравниваем к сопротивлению 30 м (2*15м) медного кабеля, с сечением жил 50 мм2.

Результаты расчётов для удобства сведем в таблицу №7.

Таблица 7 – Расчетные значения для цепей запускаемых двигателей.

Расчётные участки и точки

Величина для трансформатора и кабелей

Суммарное значение для точки К4

Суммарное значение для точки К9

Коэффициент Kx, учитывающий увеличение сопротивление кабеля из-за влияния индуктивности, для кабеля КГЭШ-Т, сечением жил 150 мм2, находим по формуле [1]:

Определяем расчетные значения напряжения на зажимах двигателя при пуске и пускового тока двигателя .

Для двигателя первого режущего диска:

где – номинальный пусковой ток запускаемого двигателя (таблица №1);

Для второго режущего диска:

Составим таблицу с полученными данными.

Таблица 8 – Расчетные значения напряжения на зажимах двигателей при пуске и пускового тока двигателей.

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

  • Ммакс/Мн – кратность максимального момента;
  • Мп/Мн – кратность пускового момента;
  • Мн – номинальный момент двигателя;

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где:
Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

  • Rв и Хв – сопротивления сети со стороны высшего напряжения;
  • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Читать еще:  Капитальный ремонт двигателя ваз

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Rт = 9,7*10 -3 = 0,0097 Ом;

Хт = 25,8*10 -3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

где:
R = 0,329 Ом/км и Х = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21

где:
cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

  • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1;
  • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

  • mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Как мы видим условие выполняется и двигатель при пуске сможет развернуть присоединенный к нему центробежный насос в нормальных условиях без перегрева своих обмоток выше температуры, допустимой по нормам.

13. Определяем влияние пуска двигателя Д1 на работу присоединенного к шинам 0,4 кВ двигателя Д2 типа 4А250S2 У3, найдем величину колебания напряжения на шинах 0,4 кВ по формуле:

13.1 Определяем коэффициент Аш по формуле:

14. В момент пуска двигателя Д1 на зажимах работающего двигателя Д2 относительное напряжение согласно [Л1, с15] уменьшиться на величину колебания напряжения δU*Ш , откуда получаем:

где:
U*Д2 = UД2/Uн = 365/380 = 0,96 – относительное напряжение на зажимах двигателя Д2 до пуска двигателя Д1.

15. Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1:

  • mп= Ммакс/Мн = 2,2 – кратность максимального момента (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

15.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д200-90а Рн.мех. = 72 кВт, к номинальной мощности двигателя 75 кВт:

Как мы видим, устойчивость работы двигателя Д2 типа 1Д200-90а обеспечивается с большим запасом.

1. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Исходные данные: Требуется обеспечить питание двух трансформаторов ТМ-4000/10 от подстанции. Линия.

Для питания потребителей постоянного тока, требуется выбрать внешнюю аккумуляторную батарею, для.

Разобравшись в предыдущей статье с принципом действия и конструкцией УЗО. Теперь перейдем.

В данной статье будет рассматриваться выбор теплового реле для асинхронного.

В данной статье я буду рассматривать пример выбора догрузочных резисторов для вторичной обмотки.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Расчет сети по потере напряжения при пуске наиболее мощных и удаленных электроприемников

Участковая сеть, выбранная по условию нормального режима, должна быть проверена на возможность пуска наиболее мощных и электрически удалённых двигателей без «опрокидывания», исходя из допустимых колебаний напряжения на их зажимах.

Для возможности пуска электродвигателей величина напряжения на их зажимах должна быть не менее: для комбайнов и самоходных вагонов – [1].

Суммарные потери напряжения в режиме пуска электродвигателей равны:

где – потери напряжения от электроприемников, включенных к моменту пуска двигателя с учетом возможности их работы в режиме холостого хода;

– потеря напряжения из-за пускового тока двигателя.

Для расчетов преобразуется к виду:

где – расчетный пусковой ток электродвигателя;

– число нагрузок без запускаемого двигателя;

– активное и индуктивное сопротивление цепи запускаемого двигателя;

– коэффициент мощности при пуске двигателя, принимаем [1].

Если электроприемники, входящие в число (n-1), работают в режиме холостого хода, то их расчетные токи , уменьшаются в 2 раза ().

Для удобства расчетов составим таблицу, включающую в себя перечень приводов, режим работы и их мощности [1]. Мощность привода хода самоходного вагона рассчитываем при второй скорости.

Таблица 5 – Расчетная мощность приводов на момент пуска режущих дисков.

Режим работы и группа

Расчетная мощность, кВт.

Режим работы и группа

Расчетная мощность, кВт.

184 (4 привода х 46)

Привод конвейера и маслонасоса СВ

Вентиляция кабины комбайна

АП-4 на комбайне

Расчетный пусковой ток двигателя определяется по формуле

где In.ном. – номинальный пусковой ток двигателя;

Un.p. – расчетное напряжение на зажимах двигателя при пуске;

Uном.д. – номинальное напряжение двигателя.

Напряжение на зажимах двигателя при пуске определяется следующим выражением:

Расчет будем вести для пуска наиболее мощных и удаленных электроприемников для каждой из РП, а именно для двигателей привода режущих дисков первой и второй групп электроприемников комбайна Урал-10А соответственно.

Схемы замещения к расчету потерь напряжения при пуске электродвигателей привода режущих дисков I и II группы комбайна Урал-10А приведены на рисунках №4 и №5.

Рис. 5. Схема замещения к расчету потерь напряжения при пуске электродвигателя привода режущих дисков I группы комбайна Урал-10А

Рис. 6. Схема замещения к расчету потерь напряжения при пуске электродвигателя привода режущих дисков II группы комбайна Урал-10А

Запуск двигателя режущих дисков I группы электроприемников комбайна Урал-10А.

Определим расчетный ток трансформатора КТП-1 и фидерного кабеля до РП-1. Расчетные мощности указаны в таблице № 5.

Расчетный ток для магистрального кабеля до потребителей первой группы комбайна Урал – 10А:

Определим потери напряжения в трансформаторе КТП-1:

Потери напряжения в фидерном кабеле №1 и АВ:

Потери напряжения в пускателе и магистральном кабеле №1:

Суммарные потери напряжения:

Запуск двигателя режущих дисков II группы электроприемников комбайна Урал-10А.

Определим расчетный ток трансформатора КТП-2 и фидерного кабеля до РП-2:

Расчетный ток для магистрального кабеля до потребителей второй группы комбайна Урал – 10А:

Определим потери напряжения в трансформаторе КТП-2:

Потери напряжения в фидерном кабеле №2 и АВ:

Потери напряжения в пускателе и магистральном кабеле №2:

Суммарные потери напряжения:

Таблица 6 – Определение потерь напряжение на зажимах двигателя к моменту их пуска.

Расчетные участки и точки

Расчетный ток участка, кабеля I’р, А

Потери напряжения ДU’НОРМ в участках сети, В

Запуск двигателя режущих дисков I группы электроприемников комбайна Урал-10А.

Суммарные потери напряжения для точки К4 = 12,46 В.

Запуск двигателя режущих дисков II группы электроприемников комбайна Урал-10А.

Суммарные потери напряжения для точки К9 = 21,49 В.

В целях упрощения расчетов определим отдельно значения АК для цепей запускаемых двигателей.

Расчетная формула для трансформаторов:

Расчетная формула для кабелей:

где – коэффициент мощности при пуске двигателей ([1]).

Внутреннее сопротивление атематического выключателя и пускателя приравниваем к сопротивлению 30 м (2*15м) медного кабеля, с сечением жил 50 мм2.

Результаты расчётов для удобства сведем в таблицу №7.

Таблица 7 – Расчетные значения для цепей запускаемых двигателей.

Расчётные участки и точки

Величина для трансформатора и кабелей

Суммарное значение для точки К4

Суммарное значение для точки К9

Коэффициент Kx, учитывающий увеличение сопротивление кабеля из-за влияния индуктивности, для кабеля КГЭШ-Т, сечением жил 150 мм2, находим по формуле [1]:

Определяем расчетные значения напряжения на зажимах двигателя при пуске и пускового тока двигателя .

Для двигателя первого режущего диска:

где – номинальный пусковой ток запускаемого двигателя (таблица №1);

Для второго режущего диска:

Составим таблицу с полученными данными.

Таблица 8 – Расчетные значения напряжения на зажимах двигателей при пуске и пускового тока двигателей.

Ссылка на основную публикацию
×
×
Adblock
detector