Приемистость двигателя это
Autoservice-ryazan.ru

Автомобильный портал

Приемистость двигателя это

ПРИЕМИСТОСТЬ ДВИГАТЕЛЯ

При работе турбореактивного двигателя на каком-либо установившемся режиме (при постоянном числе оборотов) всегда соблюдается условие:

т. е. мощность, развиваемая турбиной, равна мощности, по­требляемой компрессором и агрегатами (насосами, генера­торами, регуляторами и т. д.).

При работе двигателя на переходных, неустановившихся режимах, например при разгоне (увеличении числа оборотов двигателя), на ускорение вращающихся частей двигателя необходимо затратить дополнительную мощность. Следовательно, при разгоне ТРД мощность, развиваемая турбиной, должна быть больше мощности, потребляемой компрессором:

Здесь NИЗБ — избыточная мощность турбины, расходуе­мая на ускорение вращающихся деталей двигателя.

Чем больше избыточная мощность турбины, тем быстрое двигатель увеличивает число оборотов.

При работе двигателя на установившихся (равновесных) оборотах каждому значению числа оборотов соответствуют определенное количество газа, протекающее через турбину, определенное его давление и температура Т3 и, следова­тельно, определенная подача топлива в камеры сгорания.

Избыточная мощность турбины, необходимая для разгона двигателя, появится тогда, когда температура газа пе­ред турбиной не превысит температуру, необходимую для данного числа оборотов.

Мощность, потребляемая компрессором, с ростом числа оборотов растет сначала медленно, а затем очень быстро. На рис. 43 сплошной линией нанесена мощность, потребляе­мая компрессором. Мощность, развиваемую турбиной, при постоянной температуре газов, подходящих к ней, показы­вают кривые АА, ББ, ВВ, нанесенные пунктирными линиями.

Самая верхняя кривая АА изображает мощность, раз­виваемую турбиной, при наибольшей допустимой температуре Тзмакс. Другие кривые ББ и ВВ изображают мощ­ность турбины при более низких температурах Тз.

На рисунке видно, что мощность, развиваемая турбиной, тем больше, чем больше температура газов Т3, подходящих к ней. Точки пересечения кривых, изображающих мощность турбины, с кривой мощности, потребляемой компрессором, есть равновесные режимы.

Точки АА определяют максимальные и минимальные числа оборотов двигателя.

На максимальных числах оборотов турбина работает при наибольшей допустимой температуре Тзмакс,поэтому-то и ограничивается время непрерывной работы двигателя на максимальных оборотах.

Обороты холостого хода берутся на 1000—1200 больше минимальных, чтобы не перегреть лопатки турбины (при этом Т3будет меньше Тзмакс) и обеспечить удовлетворительную смазку подшипников.

В промежутке между числами оборотов холостого хода и максимальными числами оборотов мощность турбины пре­вышает мощность, потребляемую компрессором, т. е, иначе говоря, турбина в этом промежутке чисел оборотов имеет избыточную мощность.

Из анализа кривых, представленных на рис. 43, ясно, что для перевода двигателя с малых оборотов на большие надо увеличить мощность турбины — увеличить температуру газон перед турбиной.

Это достигается увеличением подачи топлива.

При увеличении подачи топлива увеличивается темпера­тура газов перед турбиной, при этом мощность и число обо­ротов, развиваемые турбиной, возрастут. А так как турбина связана с компрессором, то будет увеличиваться мощность, которую потребляет компрессор, это приведет к боль шей подаче (и под большим давлением) воздуха в ка­меры сгорания. В результате мощность турбины еще увели­чивается.

Рис. 43. Совместная работа турбины и компрессора

Однако, надо сказать, что избыточная мощность турбины невелика и это является одной из причин плохой приемистости турбореактивных двигателей.

Под приемистостью понимают способность двига­теля быстро изменять число оборотов (режим работы). Для турбореактивных двигателей приемистость составляет 15—18 секунд; это значит, что двигатель переходит с малого числа оборотов на максимальные за 15—18 секунд (при пе­ремещении рычага управления двигателем за 2—3 сек.).

Плохая приемистость ТРД затрудняет управление двига­телем (сектор газа надо двигать плавно, без рывков), ухуд­шает маневренность самолета, затрудняет полет в строю и уменьшает безопасность посадки. Для улучшения приеми­стости вес современные ТРД снабжены автоматами приеми­стости.

Дата добавления: 2016-06-09 ; просмотров: 2621 ;

Приемистость двигателя это

ПРИЕМИСТОСТЬ И ПРИСПОСОБЛЯЕМОСТЬ ДВИГАТЕЛЯ

Наши оппоненты некорректно применяют термины «приемистость» и «приспособляемость» двигателя. В статье «Двигатели для «летающих танков», опубликованной в журнале «Двигатель», и в ранее опубликованных материалах авторы утверждают, что по коэффициенту приемистости ГТД значительно превосходили дизельные двигатели на всех сравнительных испытаниях танков с 1972 по 1987 г. [34].

Приемистость оценивается временем разгона двигателя от режима холостого хода (для ГТД — режима малого газа) до максимальной мощности двигателя.

Приемистость дизельных двигателей В-84 уральских танков составляет 1—2 с.

Приемистость турбокомпрессора ГТД танка Т-80 — 7-8 с [7].

Дизель превосходит ГТД по этому параметру в 3—4 раза.

Необходимо отметить, что с ухудшением показателя приемистости двигателя снижается средняя скорость движения танка по местности и увеличивается расход топлива на один километр пути.

Коэффициент приспособляемости — отношение максимального крутящего момента на валу двигателя на режиме минимально допустимой рабочей частоты вращения выходного вала двигателя к крутящему моменту при частоте вращения вала, соответствующей максимальной мощности двигателя.

По этому показателю ГТД танка Т-80 выигрывает у дизеля танка Т-90С в 1,9 раза (у ГТД-1250 — 2,46 [31]; у турбопоршневого двигателя В-92С2 — до 1,3 [35]).

Коэффициент приспособляемости определяет количество переключений передач при движении танка по трассе.

Оба показателя — «приемистость» и «коэффициент приспособляемости» — влияют на средние скорости движения и топливную экономичность танка, но их влияние на изменение подвижности танка различно.

Для того, чтобы уменьшить влияние низкой приемистости ГТД танка Т-80 и обеспечить максимальное ускорение танка при движении по пересеченной местности, водители практикуют длительный полный выжим педали газа «до пола» или установку рычага сектора ручной подачи топлива в положение «максимум» (обеспечивая максимальную частоту вращения ТК) и управляют скоростью движения танка с помощью штатных тормозных средств (включение тормозов в бортовых коробках передач и торможение двигателем с помощью регулируемого соплового аппарата — РСА).

Следствием этого способа управления двигателем является дополнительный повышенный расход топлива, снижение надежности трансмиссии и возможность травмирования экипажа при резких манипуляциях тормозами.

Лучший коэффициент приспособляемости ГТД, чем у ПД, позволяет в танке Т-80 применять трансмиссию с четырьмя передачами вперед и одной передачей назад. На танке Т-90 — семь передач вперед и одна передача назад. Таким образом, коэффициент приспособляемости оказывает влияние на среднюю скорость танка только опосредованно, снижая утомляемость механика-водителя при пользовании меньшим количеством переключений передач.

Сторонники газотурбинного танка придают этому качеству необоснованно высокое значение, каким-то образом вычислив, что меньшее количество передач обеспечивает снижение утомляемости механика-водителя Т-80 на марше по сравнению с утомляемостью механика-водителя уральского дизельного танка в 3 раза [36].

Это утверждение опровергается «reductio ad absurdum» («приведением к нелепости», как способу доказательства): попробуйте представить мысленно, что после трудного 300-км марша двух рот — танков Т-80У и Т-90 Альберт Дзявго (считающий, что механики-водители Т-80У устали в 3 раза меньше, чем механики-водители танков Т-90) предложил (приказал) экипажам первой роты совершить еще два марша по 300-километрового с прежней скоростью. Предоставим читателю возможность самостоятельно домыслить, какой была бы реакция экипажей танков Т-80У.

Добавим к сказанному, что на последней модификации танка Т-90С завершается подготовка к внедрению в серийное производство автомата переключения передач, повышающего качество системы управления танком и снижающего трудозатраты механика-водителя.

Аналогичные мероприятия проводятся на модернизируемых танках Т-72Б.

В афишируемом качестве газотурбинного танка — малом количестве передач трансмиссии — кроме достоинств имеются и недостатки.

Поворот танков Т-80 и Т-90 с минимальным (фиксированным) радиусом на каждой передаче осуществляется за счет включения в бортовой коробке передач (БКП) передачи на одну ниже на отстающем борту, чем на забегающем. При этом обеспечивается минимальная разность частот вращения ведущих и ведомых дисков фрикционов (нулевая пробуксовка), включаемых на отстающем борту.

Поскольку при четырех передачах в БКП разрыв между передачами больше, чем при семи, очевидно, обеспечивается меньший радиус поворота танка Т-80. Поэтому, во избежание заноса, водитель будет вынужден или снижать скорость танка перед входом в поворот, или поворачивать с увеличенным радиусом за счет пробуксовки дисков фрикционов в БКП. В первом случае из-за низкой приемистости ГТД время разгона танка Т-80 после поворота будет больше, чем у танка Т-90.

Поворот с большими радиусами (наиболее распространенный режим в эксплуатации) осуществляется неполным включением передачи отстающего борта, т.е. за счет пробуксовки дисков фрикционов.

Пробуксовка будет тем значительнее, чем больше радиус поворота отличается от минимального.

Значит, при входе в поворот с одинаковыми скоростью и радиусом поворота, большим минимального для обоих танков, потери мощности на буксование фрикционов у танка Т-80 будут существенно выше, чем у танка Т-90, и это отрицательно сказывается на показателе их надежности.

Таким образом, при движении танков по узкой извилистой трассе танк Т-80 в сравнении с Т-90 теряет в скорости прохождения поворотов и проигрывает в топливной экономичности больше, чем на прямолинейном участке пути.

Читать еще:  Утеплитель двигателя для автомобиля

Теперь читателю нетрудно догадаться, почему по средней скорости движения по узкой извилистой лесной дороге в Дальневосточном регионе СССР танки Т-80У проиграли 11% (!) танкам Т-72А (см. главу 1).

В качестве конструктивного мероприятия, снижающего неблагоприятное влияние сложной извилистой трассы на топливную экономичность газотурбинного танка, специалисты немецкой фирмы MTU предлагали иметь у газотурбинного танка … одинаковое количество передач с дизельным танком [37].

Другим способом, уменьшающим негативное влияние поворотов танка Т-80 на топливную экономичность, является применение гидрообъемной передачи механизма поворота (ГОП МП) соответствующей мощности, исключающей буксование фрикционов в БКП при повороте танка. К сожалению, КПД трансмиссии с ГОП МП значительно ниже, чем механической трансмиссии, а ГОП является трудоемким и дорогостоящим агрегатом, требующим выделения в танке дополнительных объемов для размещения ГОП, масла, коммуникаций и радиаторов для отвода тепла.

Тем не менее это направление, реализованное в конструкции танка Т-80, могло бы уменьшить на 5—7% расход топлива [2, 38].

Таким образом, наряду с тем, что, по утверждению создателей танка Т-80, применение ГТД в танке «…упрощает и, конечно, удешевляет дорогостоящий узел танка (трансмиссию. — Прим. авторов)», оно также привносит недостатки, с которыми приходится мириться или их устранять, теряя заявленное преимущество, а то и приобретая его противоположность при применении ГОП МП.

Использование ГОП МП в танке требует обязательного учета многих факторов, в том числе: удельной мощности танка, применяемого скоростного диапазона, наиболее характерных дорожных условий при эксплуатации танка, установочной мощности ГОП МП, квалификации водителя и др.

Применение ГОП МП наиболее эффективно сказывается при движении танка по дорогам с твердым покрытием. Большое влияние на выбор ГОП МП для установки в танк оказывают характеристики дорожного грунта и удельной мощности танка.

По экспериментальным данным [39], при удельной мощности до 27 л.с./т средняя скорость движения танка со ступенчатым МП при движении по деформируемому грунту (а где еще двигаться танку?) находится на одинаковом уровне со средней скоростью танка, оснащенного ГОП МП.

В связи с этим, по нашему мнению, нецелесообразно использование ГОП МП в танках, эксплуатирующихся в войсках с сегодняшним уровнем средних скоростей (см. главу 1 «Скорость танка»).

Конечно, установка ГОП МП положительно сказывается на удобстве управления и точности следования задаваемой траектории движения. Но при этом заказчик должен определиться, сколько он готов дополнительно заплатить за комфорт при управлении танка, не получая при этом адекватного улучшения характеристик подвижности танка.

Приемистость автомобиля

Под приемистостью автомобиля понимают его способность быстро изменять скорость движения.

Оценочными параметрами приемистости являются:

  • а) максимально возможное ускорение в различных условиях движения;
  • б) время разгона;
  • в) путь разгона.

Максимально возможное ускорение (ускорение при работе двигателя на внешней характеристике) для любых условий движения можно найти, пользуясь равенством (41). Решая это равенство относительно /а, получим

Из равенства (53) видно, что максимальные ускорения различны для дорог с различными значениями у, а на одной и той же дороге (при у = const) изменяются е изменением скорости движения и включенной передачи, поскольку D = /(уа/ё |– ) и 8вр = (/к п )

. Имея динамическую характеристику и зная значения 6 , можно для различных дорог построить графики зависимости ускорения от скорости (рис. 18). Оценку приемистости различных автомобилей можно производить, сравнивая графики зависимости /а = f(ya) при движении по дорогам с одинаковым значением у (обычно у = 0,015. 0,02).

Однако точная оценка по этим графикам затруднительна, поскольку у различных автомобилей могут отличаться не только максимальные значения ускорений на каждой передаче, но и характер изменения ускорений с изменением скорости. Кроме того, различные автомобили могут иметь трансмиссии с различным числом ступеней.

Более удобными и наглядными оценочными параметрами приемистости автомобиля являются время и путь разгона автомобиля в заданном интервале скоростей.

Для теоретического определения времени и пути разгона предложено несколько способов. Наиболее известными являются графические способы, предложенные Е. А. Чудаковым и Н. А. Яковлевым.

Метод Н. А. Яковлева состоит в том, что расчетный интервал скоростей разбивается на более мелкие (элементарные) интервалы, для каждого из которых ускорение j считается постоянным, равным среднему для данного интервала (рис. 18).

Тогда для каждого такого элементарного интервала можно записать:

где v . – скорость (м/с) в начале интервала; va2 – скорость (м/с) в конце интервала; At – время (с), за которое скорость движения автомобиля увеличивается от val до га2.

Определяя из равенства (54) At, получим:

Рис. 18. График ускорений

Полное время разгона от некоторой начальной скорости до конечной скорости v /7-го элементарного интервала равно сумме Дг, + Дг, +. + Д t значений времени разгона на каждом элементарном интервале.

Путь, проходимый при равноускоренном движении, определяется формулой

Путь AS, проходимый за время Д/, соответствующий некоторому элементарному интервалу, равен

Подставив значение At из формулы (55), после преобразования получим:

где – средняя скорость на элементарном интервале.

Определив путь разгона на каждом из элементарных интервалов, можно подсчитать полный путь разгона от скорости v , до скорости v :

Если скорость va выражается в км/ч, то

Принимая на каждом элементарном интервале ускорение постоянным, мы, конечно, делаем ошибку. Эта ошибка будет тем меньшей, чем меньшими берутся элементарные интервалы.

Для повышения точности расчета интервалы скоростей берут в пределах 0,5-1 м/с 2 на первой передаче, 1-3 м/с 2 на промежуточных и 3-4 м/с’ на высшей.

Подсчитав время и путь разгона для различных интервалов изменения скорости, строят график (рис. 19), по которому можно найти время и путь, необходимые для увеличения скорости автомобиля в любом заданном интервале.

Методом Н. А. Яковлева можно пользоваться как для подсчета времени и разгона в некотором интервале скоростей на какой- либо одной передаче, так и для подсчета времени и пути разгона с переходом от любой низшей передачи к высшей.

При подсчете времени и пути разгона с переключением передач необходимо знать, при каких скоростях происходит переключение передачи. В реальных условиях момент перехода определяется водителем и может быть различным. Условно считают, что при отсутствии ограничителя (или регулятора) оборотов переключение передач происходит при скоростях, соответствующих пересечению кривых ja=.fi v а) (рис. 18) на различных передачах. При наличии ограничителя (регулятора) переключение передач происходит либо при скоростях, соответствующих пересечению указанных кривых, либо, если в пределах оборотов, допустимых ограничителем (регулятором), такое пересечение невозможно – при скоростях, соответствующих оборотам по ограничителю (регулятору).

В момент переключения передач происходит разрыв потока мощности от двигателя к ведущим колесам, в результате чего в течение некоторого времени происходит уменьшение скорости движения за счет действия на автомобиль сил сопротивления. Время t , в течение которого двигатель оказывается отсосдинсн-

Рис. 19. График ускорения, времени и пути разгона ным от ведущих колес (время переключения передач), зависит как от ряда конструктивных особенностей автомобиля (особенно коробки передач), так и от квалификации водителя. 11ри хорошей квалификации водителя время переключения передач в зависимости от конструктивных особенностей автомобиля (коробки передач и типа двигателя) изменяется в пределах tn= 0,5. 5 с.

Величина снижения скорости за время переключения передач зависит от типа дороги, скорости движения автомобиля и параметров его обтекаемости. При небольших скоростях движения можно считать

Путь, проходимый автомобилем за время переключения передач, можно приближенно определить, пренебрегая падением скорости за это время.

Тогда

где van – скорость, достигнутая к моменту переключения передачи.

Пример графиков времени и пути разгона на передачах показан на рис. 20.

  • 11ри теоретических расчетах процесс разгона обычно рассматривается упрощенно.
  • 1. Считается, что разгон полностью происходит при работе двигателя с полной подачей топлива и начинается со скорости, соответствующей минимально устойчивым оборотам двигателя при полной подаче топлива.

Рис. 20. График времени и пути разгона

В действительности, троганис автомобиля с места и разгон его после включения той или иной передачи происходят следующим образом. При выключенном сцеплении двигатель работает на холостом ходу с малой подачей топлива на оборотах, подобранных так, чтобы в момент включения сцепления двигатель не заглох. Плавно включая сцепление, водитель одновременно увеличивает подачу топлива таким образом, чтобы двигатель не глох и в то же время нарастание ускорения движения автомобиля не вызывало неприятных ощущений у пассажиров или больших динамических нагрузок в агрегатах автомобиля. При этом в течение некоторого периода времени из-за пробуксовки сцепления между оборотами двигателя и скоростью движения автомобиля нет прямой пропорциональности.

После полного включения сцепления и прекращения его пробуксовки водитель увеличивает подачу топлива в двигателе до полной, и оставшееся время разгон происходит так, как это принято при расчете, т. е. с полной подачей топлива.

Читать еще:  Сажевый фильтр на дизеле что это

Таким образом, в течение некоторого времени в результате пробуксовки сцепления и неполной подачи топлива разгон происходит с ускорениями, меньшими, чем принимаемые при расчетах.

2. Внешняя скоростная характеристика двигателя, являющаяся исходной для построения графика ускорения, соответствует установившемуся режиму работы двигателя, т. е. каждая ее точка снимается при неизменной частоте вращения коленчатого вала.

При разгоне частота вращения коленчатого вала непрерывно изменяется.

Как показывает опыт, при переменной частоте вращения коленчатого вала внешняя скоростная характеристика двигателя не совпадает с внешней скоростной характеристикой, соответствующей установившемуся режиму. У современных двигателей внутреннего сгорания (ДВС), в зависимости от их типа и конструктивных особенностей (характеристики приборов системы питания, форма камеры сгорания и др.), при одних и тех же значениях частоты вращения мощность при полной подаче топлива на неустановившихся режимах может быть либо меньше, либо больше, чем при установившихся.

Это обстоятельство также вызывает изменение фактических времени и пути разгона по сравнению с расчетными.

Таким образом, описанный выше теоретический метод определения времени и пути разгона является приближенным и может давать результаты, существенно отличающиеся от реальных.

В настоящее время имеются более точные методы, однако они являются сложными и требуют знания ряда величин, определяемых экспериментальным путем.

Двигатель начал «тупить», пропала приемистость мотора: возможные причины

Как правило, в процессе эксплуатации любой силовой агрегат по мере естественного износа становится менее производительным. При этом потеря мощности даже на моторах с солидным пробегом обычно составляет, в среднем, около 10% от заявленной паспортной. Естественно, такое снижение производительности водитель практически не замечает.

Далее мы рассмотрим наиболее частые причины, по которым мотор перестает тянуть, не реагирует своевременно на нажатие педали газа, дымит, пропадает приемистость двигателя и т.д.

Двигатель перестал тянуть, нет приемистости ДВС: самые распространенные неисправности

Начнем с того, что опытный автолюбитель хорошо знает свой автомобиль и его «характер» (динамика разгона, обороты крутящего момента и обороты максимальной мощности и т.д.). Вполне очевидно, что падение мощности обычно сразу становится заметным и является поводом для диагностики.

Что касается причин, их достаточно много, однако в каждом случае происходит потеря мощности двигателя и ухудшение его приемистости. Также среди дополнительных косвенных признаков стоит отметить, что мотор может работать нестабильно, троить и дымить.

Итак, снижение тяги зачастую вызвано следующими причинами:

  • Температура наружного воздуха. Особенно сильно ощущается на простых малолитражных 3-х или 4-х цилиндровых атмосферных двигателях (как правило, 8-клапанных) с рабочим объемом до 1.5 литра на бюджетных авто.

Например, в сильную жару многие владельцы таких машин отмечают, что машина «не едет», падает динамика, нужно сильнее нажимать на педаль газа и раскручивать ДВС до более высоких оборотов для поддержания привычного темпа езды.

Если просто, объемная часть горячего воздуха из атмосферы в двигателе уменьшается, в результате чего ухудшается и тяга. Отметим, что поломкой это считать нельзя. После того, как наружная температура понизится, все придет в норму.

  • Горючее низкого качества, не соответствует октановое число бензина и т.д. Если просто, приемистость двигателя может заметно ухудшится сразу после заправки на АЗС. В этом случае снижается мощность, может возникнуть детонация двигателя, вероятны проблемы с запуском ДВС и т.д.

В одних ситуациях нужно просто разбавить топливо более качественным, в других нужно полностью сливать горючее из бака. Наиболее проблемной ситуацией можно считать необходимость не только слить топливо, но и промывать систему питания двигателя.

  • Загрязнение воздушного фильтра. Если указанный фильтр забит, тогда в двигатель не поступает достаточного количества воздуха. В результате кислорода не хватает для полноценного сгорания всего объема подаваемого топлива. Другими словами, топливный заряд не отдает максимум своей энергии поршню.

В подобной ситуации двигатель не только не тянет, но еще и дымит. Решить проблему просто — необходимо заменить воздушный фильтр двигателя, причем такую замену можно сделать самому.

  • Загрязнение или разрушение свечей зажигания. Важно учитывать, что данные элементы на бензиновых моторах являются «расходником». Если еще учесть и плохое качество отечественного бензина, тогда не стоит сильно рассчитывать и на дорогие иридиевые или платиновые свечи с большим заявленным ресурсом.

Также к нарушениям в работе свечей зажигания может приводить и загрязнение электродов, появление нагара и налета, изменение зазора между электродами и т.д. В этом случае зазор нужно выставлять, а свечи чистить.

Если свечи старые или грязные, а также подобраны для конкретного ДВС неправильно, тогда нарушается процесс воспламенения смеси топлива и воздуха в цилиндрах, может возникнуть детонация двигателя и т.д. Мотор в таких условиях теряет приемистость, может плохо заводиться.

Прежде всего, если свечи новые, нужно выяснить, что приводит к их быстрому загрязнению. Если же свечи зажигания попросту давно не менялись, тогда необходимо подобрать нужные элементы системы зажигания под конкретный мотор и установить на двигатель новый комплект. Также внимания заслуживает и настройка системы зажигания, бронепровода, катушки, правильно выставленный УОЗ (угол опережения зажигания) и т.д.

  • Топливная система. Как и в случае с системой подачи воздуха, загрязнение системы питания приводит к тому, что в двигатель подается недостаточное количество горючего. В подобной ситуации рабочая топливно-воздушная смесь сильно «обедняется», то есть воздуха в составе смеси много, а топлива мало.

Обычно частой причиной является забитый фильтр топлива, который по рекомендации специалистов также желательно менять каждые 15-20 тыс. км. Еще нужно добавить, что периодически необходимо чистить инжектор или карбюратор, так как загрязненные жиклеры или форсунки вполне могут стать причиной явной нехватки топлива в моторе.

Также следует отдельно отметить, что снижение производительности бензонасоса можно отнести к частым причинам потери тяги двигателя. На карбюраторных ДВС диагностировать проблему проще, так устройство расположено на виду.

Однако на моторах с инжектором нужно отдельно проверять электробензонасос, который находится в топливном баке. Также в ряде случаев следует менять или чистить дополнительную сеточку-фильтр бензонасоса после снятия устройства.

  • Неполадки в системе выпуска. Не все знают, что сильное загрязнение выхлопной системы также приводит к тому, что приемистость двигателя падает. Особенно это актуально для инжекторных авто с катализатором.

Указанный элемент является фильтром, через который проходят выхлопные газы для очистки. Если пропускная способность катализатора снижена, тогда двигатель «задыхается», мощность закономерно падает, ухудшается тяга.

Наиболее правильным способом решения этой проблемы является замена катализатора на новый, однако нужно учесть, что данный элемент является весьма дорогостоящим. По этой причине на территории СНГ распространена практика удаления катализатора.

  • Износ двигателя или повреждение деталей и узлов ДВС. Данная ситуация является самой проблемной, так как причиной снижения тяги и приемистости является поломка двигателя. Как правило, речь идет о снижении компрессии, появлении задиров на зеркале цилиндров, сильном износе и залегании поршневых колец, проблемах с клапанами ГРМ и т.д.

При этом не во всех случаях стоит сразу настраивать себя на капитальный ремонт двигателя. Все будет зависеть от того, в каком состоянии находится силовой агрегат. Иногда бывает достаточно произвести замену поршневых колец, почистить двигатель от кокса и нагара, заменить маслосъемные колпачки, отрегулировать клапана и т.д.

После ряда манипуляций такой мотор еще можно «оживить» и эксплуатировать далее. В любом случае, не стоит делать каких-либо поспешных выводов до того момента, как будет произведена комплексная диагностика и дефектовка двигателя в случае его разборки.

  • Еще отметим, что как в случае с карбюраторными, так и инжекторными моторами необходимо исключить вероятность подсоса лишнего воздуха на впуске, а также утечек топлива или завоздушивания системы питания.

Подобные неисправности приводят к нарушению смесеобразования, состав рабочей смеси (соотношение топлива и воздуха) меняется, в результате чего такая смесь может не соответствовать режиму работы мотора.

Если инжекторный двигатель потерял приемистость: что нужно учитывать

С учетом того, что карбюраторные моторы все больше уходят на задний план, давайте заострим внимание на проблемах двигателей с инжектором, которые имеют ЭСУД и оснащены электронным впрыском.

Дело в том, что на таких автомобилях проблемы стоит разделить на две группы:

  • механические неисправности;
  • неполадки по электронной части и электрике;

Сама ЭСУД фактически представляет собой множество электронных датчиков, которые подают сигналы на ЭБУ, после чего блок управления посылает команды на исполнительные устройства.

Затем на основе ошибочных данных от того или иного датчика блок начинает «приготовлять» топливно-воздушную смесь, которая фактически не будет соответствовать режимам работы двигателя.

Читать еще:  Продольный поперечный и

Достаточно часто мотор теряет мощность, работает со сбоями, переходит в аварийный режим, ухудшается приемистость и тяга, агрегат дымит и т.д. именно по этим причинам. Для решения проблемы и точной локализации неисправности следует выполнить компьютерную диагностику двигателя.

Подведем итоги

Как видно, возможных причин для ухудшения приемистости двигателя и потери тяги достаточно много. При этом инжекторный мотор диагностировать сложнее по сравнению с карбюраторным ДВС.

Если суммировать полученную информацию, тогда на моторах с электронным впрыском на начальном этапе:

  • проверяется фильтр топлива и воздуха на предмет загрязнения;
  • при необходимости производится чистка инжектора, выполняется замена свечей зажигания, высоковольтных бронепроводов и т.д.;
  • затем диагностируется бензонасос, параллельно стоит проверить регулятор давления в топливной рампе;
  • далее выполняется компьютерная диагностика автомобиля;

В любом случае, если вы заметили, что двигатель автомобиля стал не такой приемистый, как раньше, лучше сразу сделать комплексную диагностику. После того, как была определена причина снижения тяги, неполадку нужно быстро и качественно устранить, что позволит избежать более серьезных последствий.

Причины, по кторым после нажатия на педаль газа возникают провалы и двигатель начинает захлебываться. Провалы мотора с ГБО при переходе с бензина на газ.

В результате чего появляются рывки и провалы при наборе скорости, машину дергает в движении на переходных режимах. Причины и устранение неисправностей.

Почему двигатель может не набирать обороты: бензиновый мотор, дизельный агрегат, автомобиль с ГБО. Диагностика неисправности, полезные советы.

Почему двигатель может иметь повышенные обороты холостого хода. Главные причины высоких оборотов ХХ на инжекторном моторе и двигателях с карбюратором.

Основные причины, по кторым двигатель начинает глохнуть после прогрева. Частые проблемы карбюраторных и инжекторных моторов, диагностика неисправностей.

Признаки неработающего цилиндра (троение и вибрации) дизельного двигателя. Поиск неисправности: компрессия, дизельные форсунки, свечи накала, ТНВД и другие.

ПРИЕМИСТОСТЬ ДВИГАТЕЛЯ

При работе турбореактивного двигателя на каком-либо установившемся режиме (при постоянном числе оборотов) всегда соблюдается условие:

т. е. мощность, развиваемая турбиной, равна мощности, по­требляемой компрессором и агрегатами (насосами, генера­торами, регуляторами и т. д.).

При работе двигателя на переходных, неустановившихся режимах, например при разгоне (увеличении числа оборотов двигателя), на ускорение вращающихся частей двигателя необходимо затратить дополнительную мощность. Следовательно, при разгоне ТРД мощность, развиваемая турбиной, должна быть больше мощности, потребляемой компрессором:

Здесь NИЗБ — избыточная мощность турбины, расходуе­мая на ускорение вращающихся деталей двигателя.

Чем больше избыточная мощность турбины, тем быстрое двигатель увеличивает число оборотов.

При работе двигателя на установившихся (равновесных) оборотах каждому значению числа оборотов соответствуют определенное количество газа, протекающее через турбину, определенное его давление и температура Т3 и, следова­тельно, определенная подача топлива в камеры сгорания.

Избыточная мощность турбины, необходимая для разгона двигателя, появится тогда, когда температура газа пе­ред турбиной не превысит температуру, необходимую для данного числа оборотов.

Мощность, потребляемая компрессором, с ростом числа оборотов растет сначала медленно, а затем очень быстро. На рис. 43 сплошной линией нанесена мощность, потребляе­мая компрессором. Мощность, развиваемую турбиной, при постоянной температуре газов, подходящих к ней, показы­вают кривые АА, ББ, ВВ, нанесенные пунктирными линиями.

Самая верхняя кривая АА изображает мощность, раз­виваемую турбиной, при наибольшей допустимой температуре Тзмакс. Другие кривые ББ и ВВ изображают мощ­ность турбины при более низких температурах Тз.

На рисунке видно, что мощность, развиваемая турбиной, тем больше, чем больше температура газов Т3, подходящих к ней. Точки пересечения кривых, изображающих мощность турбины, с кривой мощности, потребляемой компрессором, есть равновесные режимы.

Точки АА определяют максимальные и минимальные числа оборотов двигателя.

На максимальных числах оборотов турбина работает при наибольшей допустимой температуре Тзмакс,поэтому-то и ограничивается время непрерывной работы двигателя на максимальных оборотах.

Обороты холостого хода берутся на 1000—1200 больше минимальных, чтобы не перегреть лопатки турбины (при этом Т3будет меньше Тзмакс) и обеспечить удовлетворительную смазку подшипников.

В промежутке между числами оборотов холостого хода и максимальными числами оборотов мощность турбины пре­вышает мощность, потребляемую компрессором, т. е, иначе говоря, турбина в этом промежутке чисел оборотов имеет избыточную мощность.

Из анализа кривых, представленных на рис. 43, ясно, что для перевода двигателя с малых оборотов на большие надо увеличить мощность турбины — увеличить температуру газон перед турбиной.

Это достигается увеличением подачи топлива.

При увеличении подачи топлива увеличивается темпера­тура газов перед турбиной, при этом мощность и число обо­ротов, развиваемые турбиной, возрастут. А так как турбина связана с компрессором, то будет увеличиваться мощность, которую потребляет компрессор, это приведет к боль шей подаче (и под большим давлением) воздуха в ка­меры сгорания. В результате мощность турбины еще увели­чивается.

Рис. 43. Совместная работа турбины и компрессора

Однако, надо сказать, что избыточная мощность турбины невелика и это является одной из причин плохой приемистости турбореактивных двигателей.

Под приемистостью понимают способность двига­теля быстро изменять число оборотов (режим работы). Для турбореактивных двигателей приемистость составляет 15—18 секунд; это значит, что двигатель переходит с малого числа оборотов на максимальные за 15—18 секунд (при пе­ремещении рычага управления двигателем за 2—3 сек.).

Плохая приемистость ТРД затрудняет управление двига­телем (сектор газа надо двигать плавно, без рывков), ухуд­шает маневренность самолета, затрудняет полет в строю и уменьшает безопасность посадки. Для улучшения приеми­стости вес современные ТРД снабжены автоматами приеми­стости.

Дата добавления: 2016-06-09 ; просмотров: 2622 ;

Характеристика разгона двигателя на приёмистости

Автоматизация приёмистости ГТД

Лекция 11

Приёмистость двигателя – процесс перехода с режима маголого газа на режим максимальной тяги. Этот процесс характеризуется временем приёмистости . Чем меньше , тем лучше. Время приёмистости зависит от разгонных свойств двигателя, программы управления подачей топлива, изменение геометрии компрессора и площади критического сечения сопла.

Разгон двигателя на приёмистости наиболее полно отображается на характеристике компрессора. Для разгона двигателя необходим избыточный момент на турбине, что обеспечивается увеличением расхода топлива и соответствующим повышением температуры . Рост температуры ограничивается предельно допустимым её значением и снижением газодинамической устойчивости компрессора. Поэтому оптимальной линией разгона двигателя на характеристике компрессора является линия, расположенная ниже границы устойчивости с определённым запасом.

Время приёмистости двигателя может быть определено из уравнения движения ротора турбокомпрессора:

.

Время приёмистости тем меньше, чем меньше момент инерции ротора и чем больше избыточный момент на турбине .

Особенностью приёмистости двухкаскадного ТРД является увеличение скольжения роторов по сравнению со скольжением роторов при медленном изменении частоты вращения.

Характер изменения скольжения роторов двухвального ТРД

1- на установившемся режиме, 2 – при разгоне, 3 – при дросселировании

При резком увеличении расхода топлива теплоперепад на турбине ВД увеличивается в большей степени, чем на турбине НД. Это приводит к ускоренному увеличению частоты вращения ротора ВД и увеличению скольжения роторов.

Разгонная характеристика для ротора ВД имеет такой же вид, как и для одновального ТРД.

1 – оптимальный разгон, 2 – реальный разгон, 3 – линия установивших ся режимов, 4 – дросселирование.

При разгоне уменьшается, а при дросселировании увеличивается.

Разгонная характеристика по ротору НД определяется расходом воздуха на выходе из компрессора НД, т.е. частотой вращения ВД. При медленном разгоне происходит снижение запаса . При быстром разгоне из-за увеличения скольжения роторов увеличивается отсос воздуха с выхода компрессора НД. Это приводит к увеличению запаса устойчивости компрессора НД. При дросселировании двигателя из-за резкого уменьшения расхода топлива вначале наблюдается увеличение , затем из-за уменьшения скольжения роторов – уменьшение запаса устойчивости.

При проектировании двигателя время приёмистости определяется в результате интегрирования системы дифференциальных уравнений и построения переходного процесса по частоте вращения. , при использовании механизации сопла .

Для получения минимального времени приёмистости необходимо изменять расход по такой программе, чтобы разгон осуществлялся по оптимальной линии на характеристике компрессора. При этом допустимый избыток топлива при разгоне двигателя определяется устойчивостью компрессора и допустимой максимальной . Программа изменения составляется на основе кривых разгона на характеристике компрессора. Для каждой точки кривой разгона можно определить соответствующие значения и и построить оптимальную программу подачи топлива в двигатель .

Быстродействие системы подачи топлива намного превышает требуемую скорость подачи топлива во время приёмистости. В целях исключения повышенной подачи топлива при резком переводе РУД применяют специальные автоматы приёмистости. К которым относятся гидрозамедлитель и ограничитель нарастания давления.

| следующая лекция ==>
Лекция №11 | Гидрозамедлитель как автомат приёмистости двигателя

Дата добавления: 2014-01-07 ; Просмотров: 1352 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Adblock
detector