Рабочая температура электродвигателя
Autoservice-ryazan.ru

Автомобильный портал

Рабочая температура электродвигателя

ТЕМПЕРАТУРА ЭЛЕКТРОДВИГАТЕЛЯ. ЗАВИСИМОСТИ ТЕМПЕРАТУРЫ ЭЛЕКТРОДВИГАТЕЛЯ ОТ КЛАССА ИЗОЛЯЦИИ.

Температура электродвигателя.
Температура электродвигателя влияет на срок его службы и является точной индикацией состояния двигателя во время эксплуатации. Если температура электродвигателя на 10°C превышает предельно допустимые значения для определённого класса нагревостойкости изоляции, например, 155°C для электродвигателей класса F, то срок службы изоляции может сократиться на 50%. Класс нагревостойкости изоляции всегда указывается в фирменной табличке.

В таблице представлены два наиболее распространённых класса нагревостойкости изоляции: B и F.

Класс Изоляция Поверхность Подшипник
изоляции температура ( °С ) температура ( °С )

температура ( °С )
B 130 60-90 60-90
F 155 80-120 70-120

Изоляция каждого класса нагревостойкости должна выдерживать температуру, равную максимальной температуре окружающей среды плюс некоторое повышение температуры в условиях эксплуатации с максимальной нагрузкой.

Контроль температуры подшипников.
Контроль температуры подшипников также может быть частью процесса профилактического технического обслуживания. Повышение температуры подшипников с консистентной смазкой не должно превышать 60°C (на внешней крышке подшипника).

∆T подшипника = 60 K
Температура окружающей среды = 40°C
Абсолютная температура подшипника = ∆T + температура окружающей среды
60 K + 40°C = 100°C

Абсолютная температура подшипника НЕ ДОЛЖНА превышать 100°C.
Температуру подшипников электродвигателя можно постоянно контролировать с помощью внешних термометров или встроенных термодатчиков. Предельную температуру и температуру отключения для шарикоподшипников можно задать на 90°C – 100°C.

Справочник

Нагрев электродвигателей классы изоляции 10.07.2006 17:25

Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие – больше. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.

На табличке электродвигателя со всеми данными указан и параметр, называемый класс изоляции.

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции. По этому, нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально должен составлять 15—20 лет.

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.

При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени.

Предельные допустимые превышения температуры активных частей электродвигателей

t 0 (при температуре окружающей среды 40ºС):

  1. Класс E: допустимая температура нагрева до 120°C.
  2. Класс B: допустимая температура нагрева до 130°C.
  3. Класс F: допустимая температура нагрева до 155°C.
  4. Класс H: допустимая температура нагрева до 180°C.

Подробнее о классах нагревостойкости изоляции см Статью Класс нагревостойкости изоляции

В таблице приведены в качестве примера предельно допускаемые превышения температуры для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Части машин Предельно допустимые превышения температуры, 0 С, при классе изоляции
A E B F H A E B F H
общего О тяговых Т
Обмотка якоря машин постоянного тока и обмотки синхронных машин переменного тока 60 75 80 100 125 85 105 120 140 160
Многослойные обмотки возбуждения машин постоянного и переменного тока, компенсационные обмотки 60 75 80 100 125 85 115 130 155 180
Однорядные обмотки возбуждения с неизолированными поверхностями 65 80 90 110 135 85 115 130 155 180
Коллекторы и контактные кольца 60 70 80 90 100 95 95 95 95 105

Температурой окружающего воздуха, при которой общепромышленный электродвигатель может работать с номинальной мощностью, считается 40ºС.

Если температура окружающей среды больше или меньше +40 для общепромышленного исполнения электродвигателя, то стандарт разрешает определенные изменения допустимых превышений температур.

При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается. У асинхронных двигателей на это может влиять изменение напряжения питающей сети, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя и кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов.

При повышении температуры многие из материалов начинают обугливаться и становятся проводниками. Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Опыт показывает, что повышение температуры изоляции на 10 °С сокращает срок ее службы примерно в два раза. Так, для изоляции класса А повышение температуры с 95 до 105 °С сокращает срок ее службы с 15 до 8 лет, а нагрев до 120 °С — до двух лет. В основе этого явления лежит общий закон зависимости скорости химических реакций от температуры, описываемый уравнением Ван-Гоффа-Аре-ниуса.

То есть технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается.

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В производственных условиях измерение температуры узлов электрических машин и электроаппаратуры выполняется непосредственно термометром или косвенно на основе измерения их сопротивления.

Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду. Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается. Рост температуры двигателя за­медляется.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада – медленно.

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток. Подробнее Статья Класс нагревостойкости изоляции смотреть

В отдельных точках частей машины температура может быть выше средней. Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые. Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65 ° — для изоляции класса А, 90 °С — для изоляции класса В, ПО и 135 °С — соответственно для изоляции классов F и Н.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С), но важно помнить прежде всего безопасность.

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40 °С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в таблице. При температурах больше 40 С и высоте более 1000 м эти значения должны быть уменьшены в соответствии с ГОСТ (Машины электрические вращающиеся. Общие технические требования). Непосредственные измерения температуры при помощи термометров или термощупов дают надежные результаты, но не позволяют определять температуру внутренних наиболее нагретых частей обмотки. На основе измерения омического сопротивления обмотки можно определить только некоторое среднее значение ее температуры. Поэтому нормы предельно допустимой температуры обмоток указываются с учетом метода ее измерения.

Купить электродвигатель можно

через

зайдя на страницу электродвигателя нажав на него

используя стандартные формы на странице

  • используя кнопку Добавить в корзину и оформить заказ из корзины
  • использую кнопку Купить в один клик
а так же

  • отправить заявку через специальную форму Заказать
  • отправить письмо по электронной почте

Обращайтесь

У Вас есть вопрос , не нашли нужное оборудование, что-то ещё

воспользуйтесь специальной формой Напишите нам

или по электронной почте mail@arosna.com

Работаем с юридическими и физическими лицами

Для получения оформленного коммерческого предложения по форме для организаций или оформления счета на юридической лицо, воспользуйтесь любым из вариантов

  • укажите реквизиты в комментарии при оформлении через корзину
  • укажите реквизиты в тексте при использовании форм заказа или покупки в один клик
  • направьте запрос по электронной почте
  • воспользуйтесть формой для юридичесикх лиц и ИП

Оформление бухгалтерских документов по НК РФ с НДС

Контроль нагрева

Чрезмерный нагрев электродвигателей сокращает срок их службы. Степень нагрева зависит от нагрузки электродвигателя и от условий и режима его работы.

Под нагрузкой электродвигателя обычно понимают значение момента сопротивления на валу или значение пропорциональной ему величины — тока статора. Поскольку измерить момент двигателя в процессе его работы затруднительно, для контроля нагрузки измеряют ток статора и сравнивают его с допустимым значением.

Электроизоляционные материалы подразделяются на классы нагревостойкости, для которых определена наибольшая допустимая температура при использовании их в электрооборудовании общего применения, длительно работающего в нормальных эксплуатационных условиях.

Так, для класса нагревостойкости V наибольшей допустимой рабочей температурой является 90 С. К этому классу относятся непропитанные и непогруженные в жидкий электроизоляционный состав волокнистые материалы из шелка и целлюлозы. Для класса нагревостойкости А наибольшей допустимой рабочей температурой является 105°С. К классу А относятся те же волокнистые диэлектрики, но пропитанные или погруженные в жидкий диэлектрик, а также некоторые полиамидные пленки и смолы, древесные пластики, изоляция эмаль-проводов на масляно-смоляных лаках и т. д. Для класса Е наибольшей допустимой рабочей температурой является 120 °С. К этому классу относятся пластмассы, синтетические органические пленки, компаунды на основе эпоксидных и других смол. Для класса В допустимая рабочая температура равна 130°С. К этому классу относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с органическими связующими и пропитывающими составами.

Для класса F максимальная рабочая температура равна 155°С. К классу F относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами (лаки, компаунды). Для класса Н максимальной рабочей температурой является 180 °С. К классу Н относятся материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими составами, кремнийоргапические эластомеры. Для класса С максимальная рабочая температура допускается свыше 180°С. К этому классу относятся слюда, кремнийорганические материалы, стекло, кварц.

Технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается.

Точные значения допустимых температур нагрева обмоток и стали для различного типа машин при продолжительном их работе с номинальной нагрузкой устанавливаются по результатам эксплуатационных испытаний и указываются в производственных инструкциях. В большинстве случаев они не превышают 100—120 С для обмоток статоров и 105 —140 С для обмоток роторов электродвигателей.

Допустимый перегрев зависит от класса изоляции. Например, для изоляции класса А допускается превышение температуры над окружающей не более 60 С для обмоток и околооб-моточной части стали электрических машин, для изоляции класса В – не более 80°С. Так, при температуре воздуха 30°С допустимая температура статора электродвигателя с изоляцией класса А составит 90°С, а для класса В — 110 С.

Для изоляции классов А и В применяется так называемое десятиградусное правило: при превышении температуры обмоток примерно на каждые 10 °С срок службы изоляции уменьшается вдвое. Перегрев машины чаще всего происходит за счет ее перегрузки электрическим током. При превышении номинальной нагрузки необходимо снизить ее до номинальной и проследить за изменением температуры нагрева. Таким образом, задача обслуживающего персонала состоит в том, чтобы не допускать перегрузок электрических машин.

Для контроля за нагрузкой электродвигателей в одну из фаз питающей линии устанавливают амперметр, который должен показывать ток обмотки статора. На делении его шкалы, соответствующем 105% номинального тока, делают четкую отметку красного цвета, облегчающую контроль. Продолжительная работа электродвигателя при показаниях амперметра, превышающих 105% номинального тока, недопустима по условию нагрева. В этом случае необходимо понизить температуру окружающей среды (например, усилением вентиляции помещения) или уменьшить нагрузку на валу двигателя.

Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С).

Заметное влияние на нагрев электродвигателей имеет уровень напряжения питающей сети. Существенно, что увеличение и уменьшение напряжения ведут к повышению температуры нагрева электродвигателя. В связи с этим не допускаются напряжения ниже 95 % и выше 110% номинального. Наилучшие характеристики асинхронные электродвигатели имеют при напряжениях в диапазоне от 100% до 105% номинального. В этих пределах и следует поддерживать напряжение сети, питающей асинхронные электродвигатели. По условиям пуска предпочтительна верхняя граница диапазона, т. е. 1,05 Vн.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Нагрев и режимы работы электродвигателей

Во время работы электродвигателя часть электриче­ской энергии преобразуется в термическую. Это связано с энергопотерями на трение в подшипниках, на вихревые токи и перемагничивание в стали статора и ротора, а так­же в активных сопротивлениях обмоток статора и ротора.
Энергопотери в обмотках статора и ротора про­порциональны квадрату величины их токов. Ток статора и ротора пропорционален
нагрузке на валу. Другие утраты в двигателе почти не зависят от нагрузки.
При постоянной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени. Увеличение температуры мотора происходит неравномерно. Сначала она растет стремительно: практически вся теплота идет на увеличение температуры и только маленькое количество ее уходит в окружающую среду. Пе­репад температур (разница меж температурой дви­гателя и температурой окружающего воздуха) еще пока невелик. Но по мере роста температуры дви­гателя перепад растет и теплопотеря в окружающую среду возрастает. Рост температуры мотора за­медляется. Температура мотора прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура мотора именуется установившейся.
Величина установившейся температуры мотора за­висит от нагрузки на его валу. При большой нагрузке выделяется огромное количество теплоты в единицу вре­мени, означает, выше установившаяся температура двига­теля.
После отключения движок охлаждается. Темпера­тура его сначала снижается стремительно, потому что перепад ее большой, а потом по мере уменьшения перепада – медлительно.

Рис. 1. Нагрев и остывание движков: о — длительного режима работы; б — повторно-кратковременного; в — краткосрочного

Величина допустимой установившейся температуры мотора обусловливается качествами изоляции обмо­ток.
Практически у всех движков общего внедрения для изоляции обмотки употребляются эмали, синтетические пленки, пропитанные картоны, хлопчатобумажная пря­жа. Максимально допустимая температура нагрева этих материалов 105С. Температура обмотки мотора при номинальной нагрузке должна быть на 20…25 °С ниже максимально допустимой величины.
Существенно более низкая температура мотора соответствует работе его с малой нагрузкой на валу. При всем этом коэффициент полезного деяния мотора и коэффициент его мощности невелики.
Режимы работы электродвигателей.

Различают три главных режима работы движков: длительный, повторно-кратковременный и краткосрочный. Продол­жительным именуется режим работы мотора при по­стоянной нагрузке длительностью более, чем нужно для заслуги установившейся температу­ры при постоянной температуре окружающего воздуха. Повторно-кратковременным именуется таковой режим работы, при котором краткосрочная постоянная на­грузка чередуется с отключениями мотора, при этом во время нагрузки температура мотора не добивается установившегося значения, а во время паузы движок не успевает охладиться до температуры окружающего воздуха. Краткосрочным именуется таковой режим, при котором за время нагрузки мотора температура его не добивается установившегося значения, а за время паузы успевает охладиться до температуры окружаю­щего воздуха.
На рис. 1 изображены кривые нагрева и охлажде­ния мотора и подводимые мощности Р для 3-х ре­жимов работы. Для длительного режима работы изображены три кривые нагрева и остывания 1, 2, 3(рис. 1, а), надлежащие трем разным нагруз­кам на его валу. Кривая 3 соответствует большей нагрузке на валу; при всем этом подводимая мощность P3>P2>Pi- При повторно-кратковременном режиме мотора (рис. 1, б) температура его за время нагрузки не добивается установившейся. Температура дви­гателя повышалась бы по пунктирной кривой, если б время нагрузки было более долгим. Продолжитель­ность включения мотора ограничивается 15, 25, 40 и 60% времени цикла. Длительность 1-го цикла tц принимается равной 10 мин и определяется суммой времени нагрузки N и времени паузы R, т. е.
tц = N + R
Для повторно-кратковременного режима работы вы­пускаются движки с длительностью работы ПВ 15, 25, 40 и 60% ПВ = N : (N + R) * 100%
На рис. 1, в изображены кривые нагрева и охлаж­дения мотора при краткосрочном режиме работы. Для этого режима изготовляются движки с длитель­ностью периода постоянной номинальной нагрузки 15, 30, 60, 90 мин.

Теплоемкость мотора – величина значимая, потому нагрев его до установившейся температуры может длиться несколько часов. Движок кратко­временного режима за время нагрузки не успевает на­греться до установившейся температуры, потому он работает с большей нагрузкой на валу и большей под­водимой мощностью, чем таковой же движок продол­жительного режима работы. Движок повторно-крат­ковременного режима работы также работает с большей нагрузкой на валу, чем таковой же движок продолжи­тельного режима работы. Чем меньше продолжитель­ность включения мотора, тем больше допустимая нагрузка на его валу.
Для большинства машин (компрессоры, вентилято­ры, картофелечистки и др.) используются асинхрон­ные движки общего внедрения длительного режима работы. Для подъемников, кранов, кассовых аппаратов используются движки повторно-кратковре­менного режима работы. Движки краткосрочного режима работы употребляются для машин, применяёмых во время ремонтных работ, к примеру электронных талей и кранов.

Основные сведения об асинхронных электродвигателях – Нагрев, режимы работы, характеристики

Содержание материала

Преобразование двигателем электрической энергии в механическую неизбежно сопровождается ее потерями. Потери мощности происходят на активном сопротивлении обмоток статора и ротора, при трении, в сердечнике статора и т. д. Основная доля потерь обусловлена все же потерями в обмотках статора и ротора ( закон Джоуля—Ленца: Q = PRt).
Энергия, теряемая двигателем, преобразуется в теплоту и идет на его нагревание. В момент включения двигателя в работу температура его равна температуре окружающей среды Тос. Вся теплота, выделяющаяся в электродвигателе, идет на его нагрев. В дальнейшем, с повышением температуры, теплота от двигателя начинает поступать в окружающую среду, а затем наступает момент, когда вся выделившаяся теплота рассеивается в ней. Нагрев электродвигателя заканчивается, и его температура равна установившемуся значению Тдв.
После отключения двигатель начинает охлаждаться. Однако время охлаждения больше времени нагрева, поскольку в этом случае вентилятор электродвигателя не работает.
Допустимая температура нагрева двигателя определяется классом изоляции обмотки статора. Как известно, обмотка статора выполняется из медного обмоточного провода с изоляцией в виде тонкой пленки из полимерного лака. Эта изоляция в зависимости от марки провода выдерживает нагрев не более 130 °С, после чего начинает трескаться и осыпаться. Неизолированные витки обмотки замыкаются между собой, т. е. происходит короткое замыкание питающей цепи. В этом случае говорят, что обмотка «сгорает».
Температура двигателя зависит от многих факторов: температуры окружающей среды, условий охлаждения, режимов работы двигателя и т. д. Поэтому основной критерий при выборе конкретного двигателя для электропривода — его тепловой режим (нагрев).

РЕЖИМЫ РАБОТЫ ЭЛЕКТРОДВИГАТЕЛЯ

Номинальным режимом работы электродвигателя называют такой режим, при котором он может работать неограниченное время. При этом температура его основных частей не должна выходить за пределы допустимых значений. Номинальный режим указывают в паспорте электродвигателя условным обозначением S1, S2, S3 и т. д. В сельском хозяйстве используют электродвигатели с тремя основными номинальными режимами работы: продолжительным S1, кратковременным S2 и повторно-кратковременным S3.
Продолжительный режим характеризуется тем, что температура двигателя при работе с постоянной нагрузкой достигает установившегося значения. Температура считается установившейся, если в течение 1 ч она увеличивается не более чем на 1 °С. В продолжительном режиме работают двигатели вентиляторов, зерноочистительных машин, молотковых дробилок и др.
При кратковременном режиме работы температура не успевает достигнуть установившегося значения, а пауза между включениями столь продолжительна, что температура двигателя снижается до температуры окружающей среды. В паспорте такого электродвигателя укавши максимально допустимое время работы, при превышении которою он выйдет из строя. В кратковременном режиме работают двигатели привода задвижек, установленных на ороси тельных трубах.
При повторно-кратковременном режиме кратковременные периоды нагрузки чередуются с непродолжительными периодами отключения двигателя. Номинальной длительностью цикла считают 10 мин. Относительную продолжительность включенного состояния выражают в процентах, называют ПВ % и указывают в паспорте. Такие двигатели не предназначены для продолжительного режима работы.

ХАРАКТЕРИСТИКИ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Зависимость механического вращающего момента (произведение силы на радиус вращения), который создает электродвигатель, от частоты вращения ротора называется механической характеристикой (рис. 4).
В начале пуска при неподвижном роторе (п2 — 0) двигатель имеет некоторый момент, который называется пусковым (Мп). Под действием этого момента ротор раскручивается, скорость его вращения увеличивается и соответственно увеличивается момент на валу, достигая максимального (критического) значения Ммах. После этого при дальнейшем увеличении частоты вращения двигатель переходит в номинальный режим работы, в котором момент вращения двигателя Мн уравновешивает момент сопротивления нагрузки.
С увеличением момента нагрузки, как видно из рисунка 4, уменьшается частота вращения двигателя. Если момент нагрузки превысит критическое Ммах, то двигатель остановится и будет стоять до тех пор, пока момент нагрузки не уменьшится до значения пускового момента.

Рис. 4. Механическая характеристика асинхронного двигателя
Зависимость основных параметров двигателя: КПД (η), cos φ, потребляемых тока и мощности, а также частоты вращения ротора от механической мощности нагрузки принято называть рабочей характеристикой (рис. 5).
Ток, протекающий по обмотке статора во время пуска, и момент, когда ротор еще неподвижен, принято называть пусковым током. Характерная особенность асинхронного двигателя — большое значение пускового тока, который в 5. 10 раз больше номинального.
На рисунке 5 показаны изменения во времени тока статора и частоты вращения ротора в процессе пуска асинхронного двигателя. По мере увеличения частоты вращения ротора ток уменьшается и при номинальной частоте вращения пн становится равным номинальному.

Рис. 5. Рабочие характеристики асинхронного электродвигателя

Рис. 6. Пуск асинхронного двигателя
Теплота, выделяемая в обмотках, пропорциональна квадрату тока, но поскольку процесс пуска быстротечен, обмотка двигателя не успевает нагреваться. Если же по какой- либо причине остановить (заклинить) ротор работающего двигателя, то ток в его обмотке станет равным пусковому (5. 10) и, следовательно, количество теплоты, выделяющееся на обмотке, увеличится в 25. 100 раз. Температура обмотки увеличится и быстро достигнет критической, обмотка «сгорит», и двигатель выйдет из строя. Поэтому тормозить работающий двигатель более чем на 1. 2 мин не рекомендуется.

Почему греется электродвигатель

При эксплуатации электрических двигателей периодически возникает вопрос — почему привод так сильно греется? Рассмотрим эту проблему применительно к трехфазным асинхронным двигателям.

Для начала определимся, при каком значении температуры можно говорить о перегреве электродвигателя.

Когда двигатель следует считать горячим

Разумеется, при температуре корпуса +25°С ресурс двигателя будет больше, чем при +100°С. Однако для большинства электродвигателей +100°С является нормальной рабочей температурой. О температурной перегрузочной способности привода можно судить по двум характеристикам — классу изоляции и классу превышения температуры.

Температура корпуса или обмоток ниже +60°С не требует принятия каких-либо мер. Значение выше +70°С также не является критичным, однако в этом случае необходимо обратить внимание на двигатель — возможно, ему требуется дополнительная диагностика или техническое обслуживание.

При температуре выше +100°С нужно установить постоянный контроль за состоянием двигателя и принять меры по обнаружению причин нагрева. Если температура продолжает повышаться, двигатель нужно отключить от питания во избежание аварии и возгорания.

Как измерить температуру двигателя

Определить температуру двигателя можно несколькими способами.

  • Рукой. Самый простой способ, позволяющий быстро определить перегрев. Если при прикосновении к корпусу двигателя не возникает заметных болевых ощущений, можно с уверенностью сказать, что температура не превышает +60°С.
  • Термометром с внешним датчиком (контактным термометром). Этот способ требует времени и умения. Самые горячие места двигателя – посередине корпуса, где греется обмотка, а также передняя и задняя части корпуса, в районе подшипников вала.
  • Тепловизором. Это наиболее быстрый и информативный способ измерения. Он позволяет увидеть всю картину нагрева сразу.
  • С помощью встроенных датчиков. В некоторых моделях электродвигателей имеются встроенные датчики температуры (как правило, позисторы), которые выдают информацию о нагреве различных участков (обмоток, подшипников). Если такие датчики отсутствуют, их можно установить самостоятельно. Способ удобен тем, что контроль и реакцию на нагрев можно автоматизировать. Для этого сигнал от датчиков выводят на специальный вход преобразователя частоты, на специализированное реле температуры либо на аналоговый вход контроллера. В случае с контроллером можно написать программу со следующим алгоритмом: на первом пороге температуры выдается предупреждение оператору, на втором – двигатель отключается.

Причины перегрева электродвигателей

Причины перегрева двигателя могут быть механическими и электрическими.

  • Увеличение механической нагрузки на валу. Механическая перегрузка может быть вызвана заклиниванием механизмов, попаданием в них инородных предметов и т. д.
  • Износ подшипника. Рано или поздно это приведет к его заклиниванию или разрушению. Важно диагностировать данную неисправность на ранней стадии, поскольку разрушение подшипников может привести к повреждению ротора, обмоток и корпуса двигателя.
  • Механическое повреждение электродвигателя, например, нарушение соосности подшипников, которое вызовет их перегрев и трение ротора об статор.
  • Недостаточное охлаждение корпуса. Как правило, охлаждение производится при помощи крыльчатки обдува, расположенной в задней части двигателя. Если крыльчатка сломана или зацепилась за решетку и проворачивается на валу, двигатель будет перегреваться. Другая причина уменьшения обдува – пониженные обороты двигателя при его питании через преобразователь частоты. В таком случае нужно применять независимый принудительный обдув.
  • Перекос фаз и отклонение значения питающего напряжения. Асинхронные двигатели чувствительны к уровню питающего напряжения. Отклонение в 5% заметно увеличивает нагрев, при отклонении 10% эксплуатация двигателя ставится под вопрос.
  • Пропадание фазы. Это крайний случай перекоса фаз, который возникает вследствие обрыва в питающей линии, пусковом устройстве либо внутри двигателя. Последствия — значительное понижение механического момента на валу вплоть до полной остановки двигателя.
  • Нарушение схемы включения. Это относится, прежде всего, к схеме «Звезда» – «Треугольник». Причиной проблемы может быть неисправность схемы запуска либо ошибка электротехнического персонала.
  • Замыкание в обмотке двигателя. Может быть межвитковым или между фазами. Определяется путем измерения тока по фазам во включенном состоянии либо с помощью омметра, когда двигатель выключен. При небольшом количестве замкнутых витков замыкание определить проблематично.

Что делать, если обнаружен перегрев двигателя

Если двигатель греется во время работы, необходимо провести его диагностику. Для этого можно воспользоваться приведенным ниже пошаговым алгоритмом.

  1. Оцениваем температуру. Если температура критическая, нужно незамедлительно обесточить двигатель.
  2. Оцениваем наличие посторонних звуков при работе (треск, дребезг, скрежет). Если источник звука находится в механике привода (в нагрузке), необходимо остановить двигатель и провести ремонт неисправного узла. Если звук раздается из двигателя, скорее всего, потребуется заменить подшипники.
  3. Проверяем ток по фазам при помощи токовых клещей. При превышении тока можно говорить о перегрузке, при дисбалансе по фазам – о перекосе фаз, обрыве фазы или межфазном замыкании.
  4. Если подшипники предусматривают регулярную смазку, проверяем и, при необходимости, заменяем смазку.
  5. Отсоединяем нагрузку от вала двигателя, проверяем работу двигателя в холостом режиме.
  6. Проверяем работу воздушного охлаждения. При необходимости проводим чистку крыльчатки и поверхности двигателя.
  7. Проверяем защиту двигателя на соответствие номинальному току, который указан на шильдике.

Защита от перегрева

При своевременном обнаружении перегрева двигателя можно легко устранить его последствия и не допустить еще больших неприятностей. Однако лучше постараться вовсе избежать этой проблемы.

В большинстве случаев перегрев приводит к повышению рабочего тока двигателя. Контроль за током обычно осуществляют при помощи автоматов защиты и тепловых реле. Многоуровневая защита также встроена в преобразователи частоты. При использовании реле защиты двигателя дополнительно можно контролировать уровень напряжения и чередование фаз.

Приведенные способы защиты лучше всего использовать совместно с датчиками температуры. Это позволит на 100% защититься от перегрева.

Читать еще:  Насос форсунка принцип работы
Ссылка на основную публикацию
Adblock
detector