Самый мощный электродвигатель
Autoservice-ryazan.ru

Автомобильный портал

Самый мощный электродвигатель

9 самых мощных и больших двигателей

Двигатели преобразуют какой-либо из видов энергии в механическую. На сегодня их множество: ракетные, авиационные, корабельные, машинные. Они бывают как атмосферными (ДВС), так и турбореактивными.

Первые двигатели, схожие с теми, что теперь используются человечеством, были созданы еще в 17 веке. С тех пор многое изменилось, и вот уже вместо одной-единственной паровой машины людям известно свыше 10 разных по типу устройства агрегатов. В статье рассмотрим список самых мощных из них.

Двигатель на Triumph Rocket III

12-клапанный Triumph Rocket III работает на дизеле. Объем агрегата составляет 2294 м³, а размер силы вращения равен 221 нанометру — это достигается уже на 2750 оборотах в минуту. Сам мотоцикл считается лучшей разработкой Triumph Motorcycles Ltd и имеет 6 свечей зажигания.

С перевыпуском в 2005 году положение пробок двигателя изменилось: если ранее они располагались горизонтально, то теперь — вертикально. Начиная с 2006 года моторы у Triumph Rocket III имеют черный цвет, однако, клапанная крышка неизменно хромированная.

Copperhead на Dodge SRT Viper

Компания Dodge, являющаяся подразделением Chrysler Corporation, выпускает самый мощный на сегодня бензиновый двигатель, которой устанавливают в легковые спортивные автомобили Dodge SRT Viper. Объем движка мотора равен 8,4 л, он способен разогнаться до 100 км/ч всего за 3 секунды, а мощность Copperhead на Dodge SRT Viper составляет 640 лошадиных сил.

Двигатель для автомобиля разработан на базе мотора Magnum V10. В изначальном виде он подходил для пикапа, но был чрезмерно громоздким для спорткара. Одним из главных решений, принятых Chrysler Corporation при перевыпуске двигателя, было заменить материал из блоков, выполненных из чугуна, на алюминий. Вес мотора составляет около 350 кг. Крутящий момент — 630 нанометров при 3600 оборотах в минуту.

Lycoming XR-7755

Lycoming XR-7755 — наиболее крупный самолетный поршневой двигатель из всех, которые когда-либо были построены США. 36 цилиндров, объем движка на 127 л, мощность 5000 лошадиных сил. Прототип авиадвигателя построен еще в 1943 году, целью создания Lycoming XR-7755 было техническое оснащение самолета Convair-B-36.

Поднять летательный аппарат в небо агрегату ни разу так и не удалось: в послевоенные годы интерес к поршневым авиационным двигателям угас, так как тогда уже набирала популярность реактивная тяга. Длина агрегата составляла 3050 мм, диаметр — 1525 мм.

Haliade 150

Ветреной ротор Haliade 150 в Нант-Сен-Назер во Франции имеет размах лопастей размером с полтора футбольных поля — 154 м. Гондола сооружения поднята на 100 метров над землей. Мощность ветряного ротора равняется 8046 лошадиным силам. Для того, чтобы лопасти Haliade 150 пришли в движение, сила ветра должна быть не менее 3 м/с. Скорость их вращения в среднем составляет 4-11,5 оборотов в минуту.

Относительно Haliade 150 планируется, что когда-нибудь асинхронный двигатель будет ловить воздушные потоки в открытом море. Однако, на сегодня разработавшая его компания Alstom проводит испытания Haliade 150 в береговом режиме.

Место для расположения ветреного ротора выбрано с учетом высокого ветропотенциала для того, что воссоздать для двигателя условия, максимально схожие с теми, в которых его планируют эксплуатировать.

Сегодня ветреной ротор поставлен на платформу высотой 25 м. В дальнейшем, когда Haliade 150 установят на морское дно, она будет больше и выше. Однако, выглядывать из воды платформа станет так же на 25 м.

Несмотря на простоту сооружения — ветровое колесо, комбинированное с электрогенератором, ветреной ротор можно отнести к технологическим разработкам будущего. По большому счету, здесь все точно так же, как в авиации: стремление облегчить конструкцию, композитные материалы, уникальное программное обеспечение на управляющих системах.

Двигатель паровоза Big Boy

Паровоз Big Boy производился компанией Union Pacific в период с 1941 по 1944 годы. Двигатель, установленный на машину, имеет длину 26 м и мощность 6200 лошадиных сил. Сам паровоз может набирать скорость до 129 км/ч, его вес составляет 600 тонн, а общая протяженность — 40,5 м.

Примечательно, что в последний раз Big Boy отправлялся в путь по рельсам в 1962 году. Однако, недавно паровоз реконструировали к знаменательной дате: 150 лет с момента строительства трансконтинентальной железной дороги. На этот раз он прошел по рельсам от Шайена до Огдена в США. Наблюдавшие за шествующим паровозом люди отметили, что «его дебют был величественным».

Wärtsilä-Sulzer RT-flex96C

Контейнеровозы — самые большие и тяжелые судна, пересекающие океаны. Для того, чтобы облегчить постоянную транспортировку грузов весом в тысячи тонн был придуман двухтактный дизельный двигатель Wärtsilä-Sulzer RT-flex96C. Его разработала финская компания. Турбомотор используется для оснащения морских кораблей. За 1 час агрегат сжигает 6,3 тонны мазута.

Мощность Wärtsilä-Sulzer RT-flex96C равна 108 920 лошадиным силам. Габариты поршневого двигателя внутреннего сгорания также поражают: агрегат имеет длину 27 м, высоту — 13,4, а его сухая масса составляет 2300 тонн. Рабочий объем двигателя на 14 цилиндров равен 25 480 л, поршень имеет среднюю скорость 8,5 м/с.

Wärtsilä-Sulzer RT-flex96C оснащен системой сбора воды, которая конденсируется, ввиду охлаждения воздуха. Впервые запущен в сентябре 2006 года на борту Emma Marsk — на то время самого большого в мире контейнеровоза. Двигатель обладает 14 цилиндрами, диаметр каждого из них — 960 мм.

К двигателям внешнего сгорания относятся следующие агрегаты:

  • Поршневые паровые двигатели;
  • Паровые турбины;
  • Двигатели Стирлинга;
  • Паровой двигатель.

General Electric GE90-115B

Турбореактивный General Electric GE90-115B — самый большой двигатель в авиации. Применяется на самолетах Boeing 777. Разработка мотора окончилась в 1995 году, тогда же он поступил в эксплуатацию. Используется до сих пор. Диаметр агрегата — 3,25 м.

General Electric GE90-115B разработан в 70-е годы прошлого века. Прототипом для него выступил один из высокоэффективных двигателей NASA. Компрессор электромотора является 10-ступенчатым, он способен создавать степень сжатия 23:1. Длина General Electric GE90-115B составляет 729 см, ширина — 387 см, высота — 295 см.

Двигатель развивает скорость вращения вентилятора 2550 оборотов в минуту. Мощность его тяги в крейсерском режиме составляет 7945 кгс, во взлетном — 52436 кгс. Электромотор служит примером для создания новых агрегатов. Так, благодаря General Electric GE90-115B на свет появились турбореактивные двигатели GEnx.

1750 MWe Arabelle

Электродвигатель 1750 MWe Arabelle — часть АЭС Фламанвиль во Франции. Мощность агрегата — 2 346 788 лошадиных сил. Принцип работы турбинного генератора заключается в том, что двигатель перерабатывает пар, исходящий от атомного реактора, в электрическую энергию. Роторные диски, расположенные внутри 1750 MWe Arabelle, весят около 120 тонн.

Агрегат разработан французской машиностроительной компанией Alstom, габариты сооружения поражают: двигатель обладает весом 1400 тонны и диаметром 6,4 м, его высота — свыше 70 м. Турбинный генератор имеет скорость вращения 1500 оборотов в минуту.

Жидкостный ракетный двигатель F1 разработан американской компанией Rocketdyne. Целью создания агрегата было обеспечение первой ступени ракеты Сатурн-5 механической силой. На 2008 год F1 — самый мощный двигатель из всех прошедших тестовый запуск ЖРД. Мощь агрегата составляет 190 000 000 лошадиных сил. В ракету Сатурн-5 установлено 5 таких двигателей. В качестве топлива в F1 использовался керосин, а роль окислителя выполнял кислород.

Изначально жидкостный ракетный двигатель создавался по запросу ВВС США. В дальнейшем страна отказалась от поддержки разработки F1 так как у нее не было данных, подтверждающих действенность применения такого большого двигателя.

Проектом заинтересовались в NASA, они заключили договор с Rocketdyne о завершении разработки. F1 впервые испытали в марте 1959 года.

На сегодня ракета Сатурн-5, в которой установлено 5 двигателей F1, является самой мощной, тяжелой и большой из всех выходивших на орбиту. Летательный аппарат превосходит даже H-1, Space Shuttle и Falcon Heavy, является трехступенчатой.

Siemens разработал самый мощный электродвигатель для самолетов

Компания Siemens разработала электрический двигатель для самолетов, который обладает в 5 раз большей мощностью по сравнению с самыми мощными на сегодняшний день электродвигателями для самолетов. По словам представителей компании, разработка открывает новые возможности для использования электрических самолетов в коммерческих целях.

Мотор весит немногим более 50 кг, а его мощность составляет 260 кВт. В Siemens говорят, что двигатель разрабатывался специально для самолетов. Мотор способен обеспечить взлет самолета массой до 2 т. До настоящего времени такие крупные воздушные суда не могли использовать электродвигатели. Скорость вращения двигателя составила 2500 оборотов в минуту.

В Siemens считают, что новое решение позволит производить гибридные электические самолеты, рассчитанные на четырех и более человек. В недалеком будущем возможно создание электрических двигателей для гибридных воздушных судов, способных перевозить 50-100 пассажиров на региональных рейсах.

Планируется, что новый электический двигатель будет испытан на самолете к концу 2015 года.

Комментарии

“. который обладает в 5 раз большей мощностью по сравнению с самыми мощными на сегодняшний день электродвигателями для самолетов. ” – Хомяка в очках никто не видел. 🙂

Да нет, появятся суперлайнеры и ещё кое-что с атомным реактором.

А энергия для него? Газовая турбина вырабатывать будет? Смысл? Редуктор для генератора скорее всего все равно нужен, ну м.б. попроще и полегче, чем для воздушного винта. Стоит ли игра свеч?
Хотя – начинать надо, м.б. через сколько то лет это станет нормой.

Мировая тенденция – это отказ от ДВС и переход на электрические энерго-источники. Пока имеющиеся уже приблизились, но еще не выдерживают конкуренции с ДВС, но есть надежда на прорыв в этой области. Поэтому, как я думаю, такой легкий и мощный эл.двигатель для самолета – это задел на ближайшее будущее авиации, а для настоящего времени эта конструкция могла бы заменить эл.двигатели в разнообразных областях, где важна мощность и вес, т.е. от Космоса до бытовой техники

Пишут же – гибрид. точный повтор, электромобилестроения.

Генератору редуктор не нужен.

Верно, речь идет об удельном весе на один ватт энергии, потребляемым этим электродвигателем. Но он никак не может быть мощнее стандартного. Хорошие и (условно) легкие подшипники, ротор и статор – ну и конечно хомячок в очках, куда без него. 🙂

Вообще не вижу никакого противоречия в утверждении о мощности: просто раньше не делали таких мощных элетроавиадвигателей. Вот и всё.

Такой мотор подойдет для перелетания машин через препятствия или для скорой помощи, для перелетания через заторы. Короткие расстояния за счет комбинированного двигателя, в условиях где экономия ресурса не важна. 20 мин полета со скоростью 80кмч, в состоянии спасти жизнь. Разработку систем для стандартной машины скорой помощи можно начинать хоть завтра.

Когда появились первые автомобили разумеется было много скептиков, которые утверждали, что коня с бричкой ничто не заменит. Однако благодаря стараниям тех энтузиастов мы имеем сейчас надежный транспорт. Я верю, что в скором времени человечество перейдет на электрический транспорт, а то, что начальные экземпляры оставляют желать лучшего – это не страшно. Все еще впереди.

Этот двигатель для чего-то подобного:
http://www.dailytechinfo.org/military/

Если Вы о заметке о ПАК ТА – то это журналистский бред.Реально работы по ПАК ТА скромнее – говорят это будет самолет для перевозки “Арматы” (Ил76 скорее всего “Армату” не понянет), но никак не сверхзвуковой – http://lenta.ru/news/2015/03/16/pakta/
Возьмем куда более скромную область – судостроение. Существуют гражданские дизельэлектроходы. На военных кораблях – комбинированные дизель-газотурбинные установки с общим редуктором, про военные электроходы я не слышал. В СССР для комбинированных дизель-газотурбинных или газо-газотурбинных установок общий редуктор сделать не удалось, корабли так и плавали – на одном или двух валах установка экономического хода, на двух других – высокого хода, бред в общем. Казалось бы ставь электрогенераторы и электромоторы, никаких особенных редукторов не надо.Не получилось. Почему – не знаю, но наверно были серьезные причины. Тем больше подводных камней у самолетов – нужно к газовой турбине приделать электрогенератор, к винту – электромотор, и все это должно быть легче чем редуктор и не менее надежно.

Читать еще:  Шевроле авео новый кузов

Да, я о ПАК ТА. Согласен с Вами, поэтому я и сказал “для чего-то подобного”, потому что сразу бросается в глаза несоответствие заявленной сверхзвуковой скорости (2000км/ч) и винтовой тяги – это явно дозвуковой самолет.Об аэродинамической форме я уже даже не говорю

(Простой асинхронный двигатель такой мощности весит около 500 кг, а этот всего 50!)

Если в самолете используется схема Батарея-Э.двигатель-Винт или Турбина-Винт,то вопросов нет. Но если схема Турбина(или ДВС)-Э.Генератор-Э.Двигатель-Винт, как это может быть в “гибридной” схеме,то возникает вопрос чем это лучше схемы Турбина-Винт?

Асинхронник это болванка у которой для дешевизны пазы в шихтованном железе просто залиты алюминием. Дешево но сердито. Много веса и массы занимает просто железо, единственное назначение которого проводить магнитный поток, созданный статором. Конструкция хотя и проверенная временем но вообще уже бесперспективная. Немцы не иначе как ротор склеили из неодимовых магнитов и то не сплошняком а поверх бочки. Внутри пустой для легкости и вентиляции.

У Маска на Тесле асинхронник 8,5 квт/кг.80% электродвигателей -асинхронники.Будущее за ВЧ асинхронниками.

Самый мощный электромотор для лодки

Какой лодочный электромотор считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Какая бывает мощность

Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать лодочные электромоторы различных марок нужно привести имеющиеся данные к «общему знаменателю»

Единый критерий для сравнения важен. Мощности, измеренные в разных местах, существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.

Потребляемая мощность, на валу и на винте

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Измеряется в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Мощность на валу – используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Единица измерения – лошадиные силы или ватты. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте – более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют двигаться вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для носовых лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Потери мощности в лодочном электромоторе

Общая эффективность силовой установке на лодке с двигателем внутреннего сгорания около 15%. Для судна с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электромоторов 48 вольт, но для небольших лодок подходят и 24-вольтовые модели. При силе тока 50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии.

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент.

Редуктор служит источником дополнительного шума и потерь. В профессиональных электромоторах их стараются не использовать

Большинство гребных винтов для подвесных моторов небольших лодок созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и используются изготовителями до сих пор.

При разработке современных винтов используют другой подход. Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды. Винты этого типа называют винтами с переменным шагом. Их потери меньше, а КПД выше.

Виды электромоторов

Подвесные

Подвесные электромоторы устанавливают на транце или реже на носу лодки. В стандартном исполнении электромотор соединяется с системой рулевого управления, в моделях с румпелем лодкой управляют поворачивая двигатель. Мощность румпельных электромоторов варьируется от 1 до 4 кВт, а у моделей с рулевым управлением достигает 15 кВт.

Как правило мощные подвесные электромоторы рассчитаны на напряжение 24-48 Вольт. 24 вольтовый электрический двигатель мощностью 2,2 кВт развивает на винте тягу 124 lbs и сопоставим по этому показателю с подвесным бензиновым мотором мощностью 6,5 л.с. Двигатель мощностью 15 кВт эквивалентен бензиновому мотору 35 л.с

В подвесных лодочных электромоторах используют асинхронные двигатели переменного тока или синхронные двигатели на постоянных магнитах. Оба типа двигателей бесщеточные, не имеют изнашивающихся частей и не требуют обслуживания.

Pod электромоторы

POD электромоторы подходят как для однокорпусных лодок и катеров, так и для катамаранов со сдвоенными двигателями. Электромотор состоит из блока управления и гондолы внутри которой установлен асинхронный или BLDC электродвигатель. Гондола аэродинамической формы крепится к днищу судна фланцами из нержавеющей стали между килем и рулем. Чтобы избежать вибрации на руле, вызванной турбулентностью за винтом, и снизить сопротивление потоку воды гондолу стараются располагать ближе к килю.

Выпускается две модификации POD электромоторов — фиксированная и поворотная. Поворотная модель соединяется с системой рулевого управления или румпелем и обеспечивает более высокую маневренность судна

Электрические лодочные моторы типа Pod имеют мощность от 1 до 25 кВт.

Бортовые лодочные электромоторы

В бортовой силовой установке электродвигатель устанавливают внутри судна и соединяют с винтом валопроводом. Бортовым моторам требуется принудительное охлаждение. В зависимости мощности электродвигателя оно может быть воздушным или водяным.

Установка бортового электромотора на лодку сложнее чем подвесного или POD. Дополнительно потребуется вал, муфта, сальник, втулка Гудрича (дейдвудный подшипник), дейдвудная труба. Валы электромотора и винта необходимо центрировать – они должны иметь общую ось. При неправильной установке возможны протечки через сальник

Электромоторы для профессионального использования

Если лодка или катер используется для перевозки туристов, организации экскурсий или водных прогулок, то электрическая установка может оказаться выгоднее двигателя внутреннего сгорания. Экономия достигается из-за более низкой стоимости энергии и практически нулевых затрат на техническое обслуживание.

Установка подвесного лодочного электромотора для профессионального использования Aquamot на небольшой катамаран

Сравнение показывает, что при коммерческой эксплуатации судна переход с бензинового на электрический двигатель окупается за 1-2 года. Однако для этого профессиональный лодочный электромотор должен отвечать определенным требованиям:

  • Иметь высокий КПД – это позволит эксплуатировать его с аккумуляторной батареей меньшей емкости, снизит первоначальные затраты, время зарядки и стоимость потребляемой электроэнергии
  • Быть простым и надежным — электромотор должен выдерживать ежедневную интенсивную нагрузку и иметь минимум лишних функций. Дополнительные возможности, такие как встроенный компьютер c GPS, повышают цену и могут стать источником неисправностей в будущем.
  • Стоимость ремонта и технического обслуживания в течении периода эксплуатации должна быть минимальной Катамаран с установленным лодочным электромотором отправляется к месту эксплуатации

Надежность

Корпуса профессиональных лодочных электромоторов отливают из алюминия, а затем дополнительно наносят многослойное антикоррозионное покрытие. Вал делают из нержавеющей стали, а винт из бронзы. Для защиты от коррозии устанавливают жертвенный анод

В мощных электромоторах для лодок используют асинхронные двигатели переменного тока или BLDC PM электродвигатели, которые также называют вентильными. Питание вентильных двигателей осуществляется от импульсных источников энергии. При этом импульсы напряжения подаются на обмотки статора в заданные моменты времени – при определенном положении ротора относительно статора. Положение ротора определяют датчики, которые, как и импульсный источник питания, в моторах небольшой мощности находятся на печатной плате, расположенной внутри подводной части электромотора.

Зеленая плата в центре электромотора — электронный коммутатор, который заменяет щетки и кольца. Слева та же плата в увеличенном виде. В окружении воды электронные компоненты иногда работают не стабильно и отказ всего одного элемента на плате влечет за собой выход из строя всего электромотора. Заменять приходится плату целиком — это увеличивает стоимость ремонта, время простоя электромотора и срок его окупаемости при профессиональном использовании

Внутри корпуса трехфазного асинхронного двигателя дополнительных электронных компонентов нет. На долговечность двигателя влияют только подшипники и обмотки, однако качество этих элементов в настоящее время таково, что асинхронные двигатели служат до 50 000 часов без осмотра и ремонта. Асинхронные двигатели просты, надежны и эффективны. КПД мощного электродвигателя 85-92%, что на 30% выше, чем у двигателя постоянного тока, и на 40-50% больше, чем у двигателя внутреннего сгорания.

Система безопасности электромотора для коммерческих лодок имеет как механические, например, заданный предел прочности киля, так и электронные средства защиты. Электромотор отключается при перегрузке по току, при пониженном и повышенном напряжении аккумуляторов

Читать еще:  Рокера в двигателе что это

Экономичность

Высокий КПД достигается только при последовательном и тщательном улучшении всех элементов электромотора. Потерь мощности стараются избежать во всех узлах. Воздушный зазор в двигателе, конструкция ротора, изоляция обмоток оптимизируют на компьютере так, чтобы электродвигатель подходил для использования на лодках.

Корпуса двигателей и винты проектируют по тем же правилам, что и в коммерческом судостроении. Сначала рассчитывают обтекание подводных частей по трехмерной модели, а затем результаты проверяют на натурных гидродинамических испытаниях.

Редуктор, который устанавливают на некоторых моделях лодочных электромоторов не используют. Вместо этого вал электродвигателя напрямую соединяют с винтом, и конструируют двигатель таким образом, чтобы его обороты совпадали с оптимальными для винта

В результате во время движения электромотор не теряет мощность, не создает дополнительное сопротивление и способен долго работать на одной зарядке аккумулятора

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

Самый мощный электромотор для лодки

Какой лодочный электромотор считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Какая бывает мощность

Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать лодочные электромоторы различных марок нужно привести имеющиеся данные к «общему знаменателю»

Единый критерий для сравнения важен. Мощности, измеренные в разных местах, существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.

Потребляемая мощность, на валу и на винте

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Измеряется в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Мощность на валу – используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Единица измерения – лошадиные силы или ватты. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте – более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют двигаться вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для носовых лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Потери мощности в лодочном электромоторе

Общая эффективность силовой установке на лодке с двигателем внутреннего сгорания около 15%. Для судна с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электромоторов 48 вольт, но для небольших лодок подходят и 24-вольтовые модели. При силе тока 50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии.

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент.

Редуктор служит источником дополнительного шума и потерь. В профессиональных электромоторах их стараются не использовать

Большинство гребных винтов для подвесных моторов небольших лодок созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и используются изготовителями до сих пор.

При разработке современных винтов используют другой подход. Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды. Винты этого типа называют винтами с переменным шагом. Их потери меньше, а КПД выше.

Виды электромоторов

Подвесные

Подвесные электромоторы устанавливают на транце или реже на носу лодки. В стандартном исполнении электромотор соединяется с системой рулевого управления, в моделях с румпелем лодкой управляют поворачивая двигатель. Мощность румпельных электромоторов варьируется от 1 до 4 кВт, а у моделей с рулевым управлением достигает 15 кВт.

Как правило мощные подвесные электромоторы рассчитаны на напряжение 24-48 Вольт. 24 вольтовый электрический двигатель мощностью 2,2 кВт развивает на винте тягу 124 lbs и сопоставим по этому показателю с подвесным бензиновым мотором мощностью 6,5 л.с. Двигатель мощностью 15 кВт эквивалентен бензиновому мотору 35 л.с

В подвесных лодочных электромоторах используют асинхронные двигатели переменного тока или синхронные двигатели на постоянных магнитах. Оба типа двигателей бесщеточные, не имеют изнашивающихся частей и не требуют обслуживания.

Pod электромоторы

POD электромоторы подходят как для однокорпусных лодок и катеров, так и для катамаранов со сдвоенными двигателями. Электромотор состоит из блока управления и гондолы внутри которой установлен асинхронный или BLDC электродвигатель. Гондола аэродинамической формы крепится к днищу судна фланцами из нержавеющей стали между килем и рулем. Чтобы избежать вибрации на руле, вызванной турбулентностью за винтом, и снизить сопротивление потоку воды гондолу стараются располагать ближе к килю.

Выпускается две модификации POD электромоторов — фиксированная и поворотная. Поворотная модель соединяется с системой рулевого управления или румпелем и обеспечивает более высокую маневренность судна

Электрические лодочные моторы типа Pod имеют мощность от 1 до 25 кВт.

Бортовые лодочные электромоторы

В бортовой силовой установке электродвигатель устанавливают внутри судна и соединяют с винтом валопроводом. Бортовым моторам требуется принудительное охлаждение. В зависимости мощности электродвигателя оно может быть воздушным или водяным.

Установка бортового электромотора на лодку сложнее чем подвесного или POD. Дополнительно потребуется вал, муфта, сальник, втулка Гудрича (дейдвудный подшипник), дейдвудная труба. Валы электромотора и винта необходимо центрировать – они должны иметь общую ось. При неправильной установке возможны протечки через сальник

Электромоторы для профессионального использования

Если лодка или катер используется для перевозки туристов, организации экскурсий или водных прогулок, то электрическая установка может оказаться выгоднее двигателя внутреннего сгорания. Экономия достигается из-за более низкой стоимости энергии и практически нулевых затрат на техническое обслуживание.

Установка подвесного лодочного электромотора для профессионального использования Aquamot на небольшой катамаран

Сравнение показывает, что при коммерческой эксплуатации судна переход с бензинового на электрический двигатель окупается за 1-2 года. Однако для этого профессиональный лодочный электромотор должен отвечать определенным требованиям:

  • Иметь высокий КПД – это позволит эксплуатировать его с аккумуляторной батареей меньшей емкости, снизит первоначальные затраты, время зарядки и стоимость потребляемой электроэнергии
  • Быть простым и надежным — электромотор должен выдерживать ежедневную интенсивную нагрузку и иметь минимум лишних функций. Дополнительные возможности, такие как встроенный компьютер c GPS, повышают цену и могут стать источником неисправностей в будущем.
  • Стоимость ремонта и технического обслуживания в течении периода эксплуатации должна быть минимальной Катамаран с установленным лодочным электромотором отправляется к месту эксплуатации

Надежность

Корпуса профессиональных лодочных электромоторов отливают из алюминия, а затем дополнительно наносят многослойное антикоррозионное покрытие. Вал делают из нержавеющей стали, а винт из бронзы. Для защиты от коррозии устанавливают жертвенный анод

В мощных электромоторах для лодок используют асинхронные двигатели переменного тока или BLDC PM электродвигатели, которые также называют вентильными. Питание вентильных двигателей осуществляется от импульсных источников энергии. При этом импульсы напряжения подаются на обмотки статора в заданные моменты времени – при определенном положении ротора относительно статора. Положение ротора определяют датчики, которые, как и импульсный источник питания, в моторах небольшой мощности находятся на печатной плате, расположенной внутри подводной части электромотора.

Зеленая плата в центре электромотора — электронный коммутатор, который заменяет щетки и кольца. Слева та же плата в увеличенном виде. В окружении воды электронные компоненты иногда работают не стабильно и отказ всего одного элемента на плате влечет за собой выход из строя всего электромотора. Заменять приходится плату целиком — это увеличивает стоимость ремонта, время простоя электромотора и срок его окупаемости при профессиональном использовании

Внутри корпуса трехфазного асинхронного двигателя дополнительных электронных компонентов нет. На долговечность двигателя влияют только подшипники и обмотки, однако качество этих элементов в настоящее время таково, что асинхронные двигатели служат до 50 000 часов без осмотра и ремонта. Асинхронные двигатели просты, надежны и эффективны. КПД мощного электродвигателя 85-92%, что на 30% выше, чем у двигателя постоянного тока, и на 40-50% больше, чем у двигателя внутреннего сгорания.

Система безопасности электромотора для коммерческих лодок имеет как механические, например, заданный предел прочности киля, так и электронные средства защиты. Электромотор отключается при перегрузке по току, при пониженном и повышенном напряжении аккумуляторов

Экономичность

Высокий КПД достигается только при последовательном и тщательном улучшении всех элементов электромотора. Потерь мощности стараются избежать во всех узлах. Воздушный зазор в двигателе, конструкция ротора, изоляция обмоток оптимизируют на компьютере так, чтобы электродвигатель подходил для использования на лодках.

Читать еще:  Как заводится машина

Корпуса двигателей и винты проектируют по тем же правилам, что и в коммерческом судостроении. Сначала рассчитывают обтекание подводных частей по трехмерной модели, а затем результаты проверяют на натурных гидродинамических испытаниях.

Редуктор, который устанавливают на некоторых моделях лодочных электромоторов не используют. Вместо этого вал электродвигателя напрямую соединяют с винтом, и конструируют двигатель таким образом, чтобы его обороты совпадали с оптимальными для винта

В результате во время движения электромотор не теряет мощность, не создает дополнительное сопротивление и способен долго работать на одной зарядке аккумулятора

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

Самые мощные двигатели в мире

Можно долго спорить о том, какое двигатель самый мощный в мире. Поэтому существует разделение на легковые и не легковые моторы. Самый мощный двигатель в мире — Wartsila-Sulzer RTA96-C, который устанавливается на корабли. Среди легковых автомобилей есть первая десятка, которую рассмотрим, в этой статье.

История возникновения двигателя

Разработка первого двигателя внутреннего сгорания длилась почти два века, пока автомобилисты смогут узнать прототипы современных моторов. Все начиналось с газа, а не с бензина. В число людей, которые приложили свою руку к истории создания, являются — Отто, Бенц, Майбах, Форд и другие.

Но, последние научные открытия перевернули весь автомир, поскольку отцом первого прототипа считался совсем не тот человек.

Согласно историческим фактам, в XVII веке голландский ученый и физик Кристиан Хагенс разработал первый теоретический двигатель внутреннего сгорания на пороховой основе. Но, как и Леонардо был скован технологиями своего времени и воплотить свою мечту в реальность так и не смог.

Франция. 19 век. Начинается эпоха массовых механизаций и индустриализаций. В это время, как раз и можно создать, что-то невероятное. Первый, кто сумел собрать двигатель внутреннего сгорания, был француз Нисефор Ньепс, который он назвал — Пирэолофор. Он работал с братом Клодом, и они вместе до создания ДВС презентовали несколько механизмов, которые не нашли своих заказчиков.

В 1806 году в национальной французской академии прошла презентация первого мотора. Он работал на угольной пыли и имел ряд конструктивных недоработок. Несмотря на все недостатки, мотор получил положительные отзывы и рекомендации. Вследствие этого братья Ньепсе получили финансовую помощь и инвестора.

Первый двигатель продолжал развиваться. Более совершенный прототип был установлен на лодки и небольшие корабли. Но, Клоду и Нисефору этого было не достаточно, они хотели удивить весь мир, поэтому изучали разные точные науки, чтобы совершенствовать свой силовой агрегат.

Так, их старания увенчались успехами, и в 1815 году Нисефор находит труды химика Лавуазье, который пишет, что «летучие масла», которые являются частью нефтепродуктов, при взаимодействии с воздухов могут взрываться.

1858 год. Бельгийский ученый и инженер Жан Жосефа Этьен Ленуара собирает двухтактный двигатель. Отличительными элементами было то, что он имел карбюратор и первую систему зажигания. Топливом служил каменноугольный газ. Но, первый прототип работал всего несколько секунд, а потом навсегда вышел со строя.

Случилось это потому, что мотор не имел систем смазки и охлаждения. При этой неудачи Ленуар не сдался и продолжил работу над прототипом и уже в 1863 году мотор, установленный на 3-х колёсный прототип автомобиля, проехал исторические первые 50 миль.

Все эти разработки положили начало эре автомобилестроения. Первые двигатели внутреннего сгорания продолжали разрабатываться, и их создатели увековечили свои имена в истории. Среди таких были — австрийский инженер Зигфрид Маркус, Джордж Брайтон и другие.

Рейтинг самых мощных легковых моторов

Человек всегда стремиться, усовершенствоваться свои творения. Автомобильный двигатель внутреннего сгорания, тому не исключение. Поэтому на сегодняшний день существует ряд ДВС, которые уже имеют мощностные характеристики, превышающие 1000 лошадиных сил. Итак, рассмотрим рейтинг самых мощных легковых двигателей в мире.

10 место

Десятое место по праву занимает мотор с маркировкой — 9FF, который устанавливается на Porsche 9FF F97 A-Max. Движок обладает мощностью в 1400 лошадей, что составляет по 333 л.с. на каждый литр объёма.

9 место

Девятое место принадлежит Porsche Carrera GT-9 с силовым агрегатом — 9FF GT9 Vmax. Как и его предшественник, движок обладает 1400 сильным мотором, но способен разгоняться на 2 секунды быстрее.

8 место

Nissan GT-R Switzer R1K-X Red Katana, на котором установлен движок с 1470 лошадиными силами. Достаточно часто данный автомобиль встречается в Японии.

7 место

Hennessey Venom GT Spyder — это даже не спорткар, а гиперкар, который вышел в свет, в 2016 году. Под капотом данного гиганта силовой агрегат способный выдать 1470 лошадей. Максимальная скорость — 440 км/час.

6 место

Bugatti, всегда славилось своими силовыми агрегатами. И вот в модели Chiron установлен мотор с номинальной мощностью в 1500 лошадиных сил. Максимальная удельная скорость составляет 420 км/час, а разгон до сотки всего за 2,5 секунды.

5 место

Ещё один представитель GT-R серии, по праву занимает 5 место. Nissan GT-R AMS Alpha 12 обладает 1500 сильным мотором, который разгоняет транспотное средство до 100 км в час всего за 2,4 секунды.

4 место

Lamborghini Aventador Mansory Competition, на котором стоит 1600 сильный движок. Это 12 цилиндровый силовой агрегат с объёмом 6,5 литра, способный разогнаться до «сотки» за 2,1 секунду.

3 место

Mercedes-Benz SLR McLaren Brabus — яркий представитель немецкого автомобилестроения. Силовой агрегат обладает мощностью в 1600 лошадиных сил. Разгон до 100 км составляет всего 2 секунды.

2 место

Почётное второе место занимает Lamborghini Aventador Mansory Carbonado GT. Мотор 1600 лошадиными силами, но облегчённый кузов позволят разогнать транспотное средство быстрее.

1 место

Koenigsegg Regera — шведский суперкар, который считается самым мощным автомобилем в мире. Мощность мотора составляет — 1790 л.с. Максимальная скорость — 410 км/час, а разгон до 100 км/час достигается за 2,7 секунды.

Самый мощный не легковой двигатель в мире

Самым мощным двигателем в мире является дизельный силовой агрегат с маркировкой Wartsila-Sulzer RTA96-C. Этот мотор имеет внушительные размеры и устанавливается на корабли. Двухтактный турбокомрессорный дизельный двигатель Wartsila вырабатывает 110 000 лошадиных сил, которые способны двигатель значительные грузы и набирать большую скорость.

Компания выпускает самые большие сверхмощные двигатели в мире.

Описание Характеристика
Производитель Wartsila
Модель RTA96-C
Количество цилиндров От 6 до 14
Клапана Один выпускной на каждый из цилиндров
Система питания Механический насос (RTA96C), система common rail (RT-flex96C)
Диаметр цилиндра 960 мм
Ход поршня 2500 мм
Объём мотора 1820-25480 литров
Мощность 108 920 л.с.
Вес коленчатого вала 300 тонн

Вывод

Самым мощным мотором в мире по праву считается Wartsila-Sulzer RTA96-C со своими 110 000 лошадиными силами. Среди легковых автомобилей, первенство уверенно удерживает — Koenigsegg Regera.

Самые большие двигатели, сделанные человеком

Устройства, преобразующие какой-либо вид энергии в механическую работу, человечество использует уже довольно давно. К примеру, первым двигателем в истории можно считать парус, которым польются уже более 7 тысяч лет. Название для таких преобразующих устройств позаимствовали в немецком языке — немецкое «motor», что переводится как «двигатель».

Человечество развивалось в условиях постоянного научно-технического прогресса, что неизменно приводило к появлению всё новых механизмов, облегчающих жизнь.

Среди всего многообразия двигатели различают по источнику энергии и по типам движения. Среди всего разнообразия этих устройств рассмотрим наиболее крупные, и узнаем, какой самый большой двигатель в мире.

Wärtsilä-Sulzer RTA96

Компания «Wärtsilä», что расположена в Финляндии, выпустила из своих цехов самый большой дизельный двигатель в мире. Изделие финских конструкторов и инженеров используется на крупнейших контейнеровозах, бороздящих морские просторы.

При длине в 89 футов вес этого гиганта достигает 23 000 тонны. Один коленчатый вал огромного двигателя весит 300 тонн. За час работы расходуется 13 000 литров мазута.

Saturn V

Самый большой ракетный двигатель за всю историю ракетостроения был спроектирован американцами в начале 60-х годов ХХ века. Трёхступенчатая ракета-двигатель создавалась для реализации лунной программы США.

На старте тяговая сила «Saturn V» равнялась 34 500 000 Н.м., что позволяло вывести на орбиту груз весом в 130 тонн.

После 13 успешных запусков с 1967 по 1973 год программу закрыли. Стоит отметить, что и в СССР был подобный ракетоноситель «Энергия», выводивший на орбиту «Буран».

1750 MWe ARABELLE

Крупнейший в мире турбогенератор использует уникальнейшую технологию, которая преобразовывает пар, исходящий от атомного реактора в электроэнергию. Четыре подобных генератора работают во Франции.

Дизайн Arabelle был разработан в конце 80-х годов прошлого столетия, и учитывал накопленный опыт прежних моделей. Ряд функций турбогенератора значительно увеличивают его эффективность и снижают затраты на установку и обслуживание. На нашем сайте TheBiggest вы сможете познакомиться с самыми большими ГЭС в мире.

Ветряной ротор Siemens SWT-6.0-154

В устройстве, преобразующем энергию ветра, использована технология прямого привода, что значительно улучшает эффективность, а также увеличивает срок службы за счёт меньшего количества быстро движущихся деталей.

Диаметр самого ротора 154 метра, который позволяет вырабатывать 6 500 кВт энергии. Уникальность конструкции позволяют широко использовать SWT-6.0-154 на открытых участках морских побережий.

Lycoming XR-7755

Бесспорным рекордсменом среди авиационных ДВС по размерам и мощности выступает «Lycoming XR-7755».

Объём авиационного двигателя 127 литров при общем весе 2 740 килограмм. Двигатель в 5 тысяч л.с. поднимал в небо бомбардировщики В-26.

За всю историю было сконструировано и выпущено всего два таких уникальных авиационных двигателя.

SRT Viper, VX

В 2013 году компания «Chrysler Group» начала производство автомобилей, на которых установлен самый мощный двигатель, когда-либо использовавшийся в автомобилестроении.

Технические характеристики поистине впечатляют. Объём SRT Viper 8,4 литра, а вот мощность 649 лошадиных сил. При таких параметрах автомобиль разгоняется до 100 километров в час за 3.3 секунды. Максимальная же скорость, которую развивает спорткар с таким движком, равняется 330 км в час.

Chevrolet «572» 9.2 V8

Крупные двигатели американский автомобильный производитель «General Motors» стал разрабатывать в середине 1950-х годов. Двигатель Chevrolet «572» 9.2 относится уже к пятому поколению подобных моторов.

По объёму в 9,4 л это самый большой автомобильный мотор в мире, но уступает немного в мощности SRT Viper.

Но конструкторы не оставляют надежды, и продолжают работы над поистине фантастическими проектами по созданию крупнейших моторов.

Triumph Rocket III

Этот трёхцилиндровый мотор, мощностью в 140 лошадиных сил, установлен на скоростном мотоцикле.

Силовой агрегат британских производителей имеет жидкостную систему охлаждения и 5-ступенчатую коробку передач, а расход топлива в черте города составляет 8,2 литра на 100 км.

Любителям мототехники советуем посмотреть нашу статью про 13 самых мощных байков в мире.

GE90-115B

В завершение ещё один авиационный гигант, используемый на 777 серии Боингов. Реализация подобного проекта потребовала больших затрат, но они эффективно и в кратчайшие сроки окупились.

Мощность авиационного мотора 569 000 Н.м. уникальна и его конструкция, выполненная из материалов, способных выдержать большие нагрузки и температуру в 1 316 градусов по Цельсию. Очень советуем вам посмотреть на самые большие самолёты в мире.

Заключение

Вот мы и представили нашу десятку крупнейших двигателей мира. Как видим, они используются в различных отраслях, от ракетоносителей, способных выводить большие космические корабли, до движков, установленных на мотоциклах. Именно самые большие двигатели позволили человечеству разогнаться быстрее звука и преодолеть притяжение земли.

Технический прогресс не стоит на месте, и, возможно, в скором времени, человеческий гений создаст ещё более мощный двигатель, и самый большой двигатель сможет доставить человека к другим планетам. TheBiggest держит руку на пульсе двигателестроения, чтобы вовремя обновлять наш материал про самые большие двигатели планеты.

Ссылка на основную публикацию
×
×
Adblock
detector