Системы питания назначение
Autoservice-ryazan.ru

Автомобильный портал

Системы питания назначение

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

Система питания

Устройство и работа системы питания

Система питания двигателя служит для приготовления горючей смеси из паров топлива и воздуха в определенных пропорциях, подачи ее в цилиндры двигателя и отвода из них отработавших газов. За подачу топлива в цилиндры в современных автомобилях отвечает система впрыска топлива, основными элементами, которой являются форсунки.

Устройство системы питания

В систему питания карбюраторного двигателя входят: топлив­ный бак, фильтр-отстойник, топливопроводы, топливный насос, фильтр тонкой очистки топлива, карбюратор, воздухоочиститель, впускной трубо­провод, выпускной трубопровод, приемные трубы, глушитель, приборы контроля уровня топлива.

Работа система питания

При работе двигателя топливный насос засасывает топливо из топлив­ного бака и через фильтры подает в поплавковую камеру карбюратора. При такте впуска в цилиндре двигателя создается разрежение и воздух, пройдя через воздухоочиститель, поступает в карбюратор, где смешивается с парами топлива и в виде горючей смеси подается в цилиндр, и там, сме­шиваясь с остатками отработавших газов, образуется рабочая смесь. После совершения рабочего хода, отработавшие газы выталкиваются поршнем в выпускной трубопровод и по приемным трубам через глушитель в окру­жающую среду.

Топливный насос высокого давления

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 – выпускная труба глушителя.

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Как выбрать хорошую АЗС?

Как обманывают на АЗС:

основные способы недолива.

Как проверить АЗС на недолив?

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

бывает гомогенным и послойным

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей – н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

Система впрыска топлива «К-Jetronic»

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

Фильтры тонкой очистки топлива

Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.

Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.

Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.

Фильтры тонкой очистки топлива с фильтрующими элементами: a — сетчатый; б — керамический; 1— корпус; 2— входное отверстие; 3— прокладка; 4— фильтрующий элемент; 5— съемный стакан-отстойник; 6 — пружина; 7— винт креплении стакана; 8— канал для отвода топлива.

Инерционно-масляные воздушные

фильтры в автомобиле

Фильтр тонкой очистки. Для очистки топлива от мелких механических примесей применяют фильтры тонкой очистки , которые состоят из корпуса, стакана-отстойника и фильтрующего сетчатого или керамического элемента. Керамический фильтрующий элемент — пористый материал, обеспечивающий лабиринтное движение топлива. Фильтр удерживается скобой и винтом.
Топливо проводы соединяют приборы топливной системы и изготовляются из медных, латунных и стальных трубок.

Топливный насос системы питания

Топливный насос служит для подачи топлива через фильтры из бака в поплавковую камеру карбюратора. Применяют насосы диафрагменного типа с приводом от эксцентрика распределительного вала. Насос состоит из корпуса, в котором крепится привод — двуплечий рычаг с пружиной, головки, где размещены впускные и нагнетательные клапаны с пружинами, и крышки. Между корпусом и головкой зажаты края диафрагмы. Шток диафрагмы к рычагу привода крепится шарнирно, что позволяет диафрагме работать с переменным ходом.
Когда двуплечий рычаг (коромысло) опускает диафрагму вниз, в полости над диафрагмой создается разрежение, за счет чего открывается впускной клапан и наддиафрагменная полость заполняется топливом. При сбегании рычага (толкателя) с эксцентрика диафрагма поднимается вверх под действием возвратной пружины. Над диафрагмой давление топлива повышается, впускной клапан закрывается, открывается нагнетательный клапан и топливо поступает через фильтр тонкой очистки в поплавковую камеру карбюратора. При смене фильтров поплавковую камеру заполняют топливом с помощью устройства для ручной подкачки. В случае выхода диафрагмы из строя (трещина, прорыв и т. п.) топливо поступает в нижнюю часть корпуса и вытекает через контрольное отверстие.

Воздушный фильтр служит для очистки воздуха, поступающего в карбюратор, от пыли. Пыль содержит мельчайшие кристаллы кварца, который, оседая на смазанных поверхностях деталей, вызывает их изнашивание.

Требования, предъявляемые к фильтрам:

• эффективность очистки воздуха от пыли;
• малое гидравлическое сопротивление;
• достаточная пылеемкость:
• надежность;
• удобство в обслуживании;
• технологичность конструкции.

По способу очистки воздуха фильтры делятся на инерционно-масляные и сухие.
Инерционно-масляный фильтр состоит из корпуса с масляной ванной, крышки, воздухозаборника и фильтрующего элемента из синтетического материала.
При работе двигателя воздух, проходя через кольцевую щель внутри корпуса и, соприкасаясь с поверхностью масла, резко изменяет направление движения. Вследствие этого крупные частицы пыли, находящиеся в воздухе, прилипают к поверхности масла. Далее воздух проходит через фильтрующий элемент, очищается от мелких частиц пыли и поступает в карбюратор. Таким образом, воздух проходит двухступенчатую очистку. При засорении фильтр промывают.
Воздушный фильтр сухого типа состоит из корпуса, крышки, воздухозаборника и фильтрующего элемента из пористого картона. При необходимости фильтрующий элемент меняют.

Назначение и устройство системы питания топливом двигателей внутреннего сгорания. (50 мин.)

Организационная часть (15 мин.).

Занятие 6. Система питания топливом двигателя Rotax 912

ТЕМА 4. Система питания топливом силовой установки Rotax 912.

Астана 2012 г.

УЧЕБНЫЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ

КОНСТРУКЦИЯ СИЛОВОЙ УСТАНОВКИ

ТЕМА 4. Система питания топливом двигателя Rotax 912

1. Ознакомить курсантов с устройством системы питания топливомдвигателя внутреннего сгорания, с общим назначением ее агрегатов и систем.

2. Напомнить курсантам некоторые данные по физике.

3. Ознакомить курсантов с основными техническими данными системы питаниятопливом двигателя Rotax 912.

4. Привить курсантам способность грамотно действовать при возможных отказах системы питания топливомдвигателя Rotax 912.

ВРЕМЯ:3 часа

МЕТОД:лекция

МЕСТО:учебная аудитория

РАЗРАБОТАЛ: МОЗГОВОЙ Н.Н.

Изучаемые вопросы:

6.1. Организационная часть (15 мин.).

6.2. Назначение и устройство системы питания топливом двигателей внутреннего сгорания. (50 мин.).

6.3. Состав, общая схема и работа системы питания топливом двигателя Rotax 912. (45 мин.).

6.4. Основные данные системы питания двигателя Rotax 912 (20 мин.).

6.5. Заключительная часть (5 мин.).

Опрос по теме №3.

Порядок изучения темы № 4.

Система питания топливом двигателя внутреннего сгорания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи её в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания топливом. Поскольку мы рассматриваем работу карбюраторного бензинового двигателя, то в дальнейшем, под топливом будет подразумеваться именно бензин.

Ри.с. 6.1. Схема расположения элементов системы питания
1 – заливная горловина с пробкой; 2 – топливный бак; 3 – датчик указателя уровня топлива с поплавком; 4 – топливозаборник с фильтром; 5 – топливопроводы; 6 – фильтр тонкой очистки топлива; 7 – топливные насосы; 8 – поплавковая камера карбюратора с поплавком; 9 – воздушный фильтр; 10 – смесительная камера карбюратора; 11 – впускной клапан; 12 – впускной трубопровод; 13 – камера сгорания

Система питания (см.рис. 6.1.) состоит из:

фильтров очистки топлива;

Топливный бак – это емкость для хранения топлива. Обычно он размещается в более безопасной части самолета (в фюзеляже, в крыле). От топливного бака к карбюратору бензин поступает по топливопроводам. У рачительного водителя первая ступень очистки бензина происходит при заливке его в топливный бак. Для этого в заливной горловине бака следует установить сетчатый или какой-либо другой фильтр. Вторая ступень очистки топлива – сетка на топливозаборнике внутри бака. Она не дает возможности оставшимся примесям и воде, попасть в систему питания двигателя. Наличие и количество бензина в баке контролируется по показаниям указателя уровня топлива. При минимальном остатке топлива на щитке прибора загорается соответствующая красная лампочка – лампа резерва. Расход топлива контролируется по показаниям расходомера, выводимого на прибор контроля параметров двигателя.

Топливный фильтр – следующий, третий этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса).

Топливный насос – предназначен для принудительной подачи топлива из бака в карбюратор. Насос состоит из (см. рис. 6.2.):

корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной – четвертой ступени очистки бензина. Топливный насос приводится в действие от от распределительного вала двигателя. При вращении вала, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над ней создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой. При сбегании эксцентрика со штока, диафрагма освобождается от воздействия рычага и, за счет жесткости пружины, поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой отправляется к карбюратору. При очередном набегании эксцентрика на шток, бензин всасывается и процесс повторяется. Обратите внимание на то, что подача бензина в карбюратор происходит только за счет усилия пружины, которая поднимает диафрагму. А это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан (см. рис. 6.1.) перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. И до тех пор, пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии «вытолкнуть» из насоса очередную порцию бензина.

Рис. 6.2. Схема работы топливного насоса а) всасывание топлива, б) нагнетание топлива

1 – нагнетательный патрубок; 2 – стяжной болт; 3 – крышка; 4 – всасывающий патрубок; 5 – впускной клапан с пружиной; 6 – корпус; 7 – диафрагма насоса; 8 – рычаг ручной подкачки; 9 – тяга; 10 – рычаг механической подкачки; 11 – пружина; 12 – шток; 13 – эксцентрик; 14 – нагнетательный клапан с пружиной; 15 – фильтр для очистки топлива

Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. При этом используется электрическая помпа для подкачки топлива.

Воздушный фильтр (рис. 6.3.) предназначен для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора. При загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином.

Рис. 6.3. Воздушный фильтр

Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режимов работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество этой смеси. Карбюратор – это один из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме (рис. 6.4.).

Рис. 6.4. Схема работы простейшего карбюратора

1 – топливная трубка; 2 – поплавок с игольчатым клапаном; 3 – топливный жиклер; 4 – распылитель; 5 – корпус карбюратора; 6 – воздушная заслонка; 7 – диффузор; 8 – дроссельная заслонка

Простейший карбюратор состоит из: поплавковой камеры, поплавка с игольчатым запорным клапаном, распылителя, смесительной камеры, диффузора, воздушной и дроссельной заслонок, топливных и воздушных каналов с жиклерами.

Как же все-таки готовится горючая смесь? При движении поршня в цилиндре от верхней мертвой точки к нижней (такт впуска), над ним создается разрежение. Поток воздуха через воздушный фильтр и карбюратор, устремляется в освободившийся объем цилиндра. При прохождении воздуха через карбюратор, из поплавковой камеры через распылитель, который расположен в самом узком месте смесительной камеры – диффузоре, высасывается топливо. Это происходит по причине разности давлений в поплавковой камере карбюратора, которая связана с атмосферой, и в диффузоре, где создается значительное разрежение. Поток воздуха дробит вытекающее из распылителя топливо и смешивается с ним. На выходе из диффузора происходит окончательное перемешивание бензина с воздухом, и затем уже готовая горючая смесь поступает в цилиндры.

Из схемы работы простейшего карбюратора (см. рис.6.4.) можно понять, что двигатель не будет работать нормально, если уровень топлива в поплавковой камере выше нормы, так как в этом случае бензина будет выливаться больше, чем надо. Если же уровень бензина будет меньше нормы, то и его содержание в смеси будет меньше, что опять нарушит правильную работу двигателя. Исходя из этого, количество бензина в камере должно быть неизменным. Уровень топлива в поплавковой камере карбюратора регулируется специальным поплавком, который, опускаясь вместе с игольчатым запорным клапаном, позволяет бензину поступать в камеру. Когда же поплавковая камера начинает наполняться, поплавок всплывает и закрывает своим клапаном проход для бензина.

Дроссельная заслонка, посредством рычагов или троса, связана с ручкой управления двигателем. В исходном положении заслонка закрыта. при открытии дроссельной заслонки, поток воздуха, проходящего через карбюратор, увеличивается. При этом, чем больше открывается дроссельная заслонка, тем больше высасывается топлива, так как повышаются объем и скорость потока воздуха, проходящего через диффузор и «высасывающее» разрежение увеличивается. При закрытии дроссельной заслонки, поток воздуха уменьшается, и в цилиндры поступает все меньше и меньше горючей смеси. Двигатель «теряет обороты», уменьшается крутящий момент двигателя. При полном закрытии дроссельной заслонки двигатель работает на холостом ходу, в карбюраторе есть свои каналы, по которым воздух все-таки может попасть под дроссельную заслонку, смешиваясь по пути с бензином (см.рис.6.5.).

Рис. 6.5. Схема работы системы холостого хода

1 – топливный канал системы холостого хода; 2 – топливный жиклер системы холостого хода; 3 – игольчатый клапан поплавковой камеры карбюратора; 4 – топливный жиклер; 5 – дроссельная заслонка; 6 – винт «качества» системы холостого хода; 7 – воздушный жиклер системы холостого хода; 8 – воздушная заслонка

При закрытой дроссельной заслонке воздуху не остается другого пути, кроме как проходить в цилиндры по каналу холостого хода. А по пути, он высасывает бензин из топливного канала и, смешиваясь с ним, опять же, превращается в горючую смесь. Почти готовая к «употреблению» смесь попадает в поддроссельное пространство, там окончательно перемешивается и затем поступает в цилиндры двигателя.

При запуске холодного двигателя используется ручка управления дроссельной заслонкой (ручка подсоса), которая управляетвоздушной заслонкой карбюратора. Если прикрывать эту заслонку (вытягивать на себя рукоятку «подсоса»), то будет увеличиваться разрежение в смесительной камере карбюратора. Вследствие этого топливо из поплавковой камеры начинает высасываться более интенсивно и горючая смесь обогащается, что необходимодля запуска холодного двигателя.

Горючая смесь называетсянормальной, если на одну часть бензина приходится 15 частей воздуха (1:15). Это соотношение может меняться в зависимости от различных факторов, и соответственно будет менятьсякачество смеси. Если воздуха будет больше, то смесь называетсяобедненной или бедной. Если же воздуха меньше –обогащенной или богатой.Обедненная и бедная смеси – это голодная пища для двигателя, в ней топлива меньше нормы. Обогащенная и богатая смеси – слишком калорийная пища, так как топлива в ней больше, чем надо.

Не нашли то, что искали? Воспользуйтесь поиском:

Дизельная, инжекторная, карбюраторная системы питания ДВС

Система питания современного автомобиля

Двигатель внутреннего сгорания (далее – ДВС) не зря считается сердцем автомобиля. Именно производимый им крутящий момент является первоисточником всех механических и электрических процессов, происходящих в транспортном средстве. Однако мотор не может существовать обособленно от обслуживающих его систем – смазки, питания, охлаждения и выпуска газов. Наиболее значимую роль при функционировании ДВС играет система питания двигателя (или топливная система).

Функции, устройство и принцип функционирования

Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.

Система питания выполняет функции:

  1. подачи топлива, его очистки и хранения;
  2. очистки воздуха;
  3. приготовления специальной горючей смеси;
  4. подачи смеси в цилиндры ДВС.

Классическая система питания автомобиля состоит из следующих структурных элементов:

  • топливного бака, предназначенного для хранения горючего;
  • топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
  • топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
  • фильтра (или фильтров) очистки топлива;
  • воздушного фильтра (для очистки воздуха от примесей);
  • устройства приготовления топливно-воздушной смеси.

Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.

Варианты системы питания

Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности.
Вид топлива является одним из критериев классификации систем питания ДВС.

В этой связи выделяют силовые агрегаты:

  1. бензиновые;
  2. дизельные;
  3. основанные на газообразном топливе.

Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).

Карбюратор

Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:

  • поплавковую камеру и поплавок;
  • распылитель, диффузор и смесительную камеру;
  • воздушную и дроссельную заслонки;
  • топливные и воздушные каналы с соответствующими жиклерами.

Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.

Таким образом, система питания карбюраторного двигателя представляет собой преимущественно механический способ приготовления топливно-воздушной смеси.

Впрыск топлива

Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).

Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления.
Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.

Так, специалисты склонны выделять следующие варианты инжектора:

  1. с распределенным впрыском;
  2. с центральным впрыском.

Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.

Особенности дизельного двигателя

Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем.
В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:

  • с непосредственным впрыском;
  • с вихрекамерным впрыском;
  • с предкамерным впрыском.

Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.

Еще одна особенность, которой отличается система питания дизельного двигателя, заключается в принципе возгорания горючей смеси. Это происходит не от свечи зажигания (как у бензинового двигателя), а от давления, создаваемого поршнем цилиндра, то есть путем самовоспламенения. Иными словами, в этом случае нет необходимости применять свечи зажигания.

Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.

Режимы работы системы питания

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.
” alt=””>

Неисправности и сервисное обслуживание

В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.

Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

Потеря мощности ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

Утечка горючего

Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.

Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.

Подробно о системе питания двигателя

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси

Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

Электронный блок является своеобразным «мозговым» элементом системы. Этот сложный механизм обрабатывает поступающие на него сигналы от различных датчиков. Так происходит управление всеми устройствами топливной системы. Такая схема системы питания двигателя дает возможность водителю во время узнать о сбоях в работе, так как блок управления сигнализирует о них с помощью специальной лампы и кодов ошибки. Данные коды позволяют специалистам быстро выявить неполадки. Для этого им достаточно подключить внешнее диагностическое устройство, которое сможет распознать возникшие проблемы и назвать их.

Системы питания назначение

Система питания бензинового двигателя

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания.
4.2 Определение понятий «горючая смесь», «рабочая смесь», «состав горючей смеси», «коэффициент избытка воздуха».
4.3 Режимы работы двигателя и составы горючей смеси на этих режимах.
4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания.
4.5 Общее устройство и работа систем распределенного впрыска топлива.

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания

Система питания карбюраторного двигателя предназначена для приготовления в определенной пропорции из топлива и воздуха горючей смеси, подачи ее в цилиндры двигателя и отвода из них отработавших газов.

В систему питания двигателя автомобиля входят топливный бак, топливопроводы от бака к фильтру-отстойнику и к топливному насосу, карбюратор, воздушный фильтр, приемные трубы, глушитель, выпускная труба глушителя. В систему питания входят также фильтр тонкой очистки топлива, установленный между топливным насосом и карбюратором, впускной трубопровод, на котором укреплен карбюратор, и выпускной трубопровод.

Во время работы двигателя топливо из бака после предварительной очистки в фильтре-отстойнике насосом подается к карбюратору. При такте впуска в цилиндре двигателя создается разрежение, передающееся в карбюратор и в установленный на нем воздушный фильтр. Очищенный воздух проходит в смесительную камеру, где из жиклеров подается топливо. Испаряющееся топливо перемешивается с воздухом, образуя горючую смесь. Из карбюратора по впускному трубопроводу горючая смесь поступает в цилиндры двигателя. Газы, образовавшиеся после быстрого сгорания рабочей смеси в цилиндре, расширяются, давят на поршень, и он опускается вниз, совершая рабочий ход. После рабочего хода отработавшие газы через открытый выпускной клапан вытесняются поршнем в выпускной трубопровод. Затем они поступают в приемные трубы глушителя, выпускную трубу и в атмосферу. Топливо наливают в бак через горловину, закрываемую крышкой. Количество топлива, находящегося в баке, контролируют при помощи датчика и указателя уровня топлива. Принципиальная схема системы питания карбюраторного двигателя показана на рис. 4.1.

4.2 Определение понятий «горючая смесь», «рабочая смесь», «состав горючей смеси», «коэффициент избытка воздуха»

Смесь топлива с воздухом называется горючей смесью. Горючая смесь, попадая в цилиндр, смешивается с остаточными газами, которые не были удалены при такте выпуска. Образовавшаяся смесь называется рабочей.

Состав горючей смеси характеризуется определенным соотношением масс топлива и воздуха. Для полного сгорания 1 кг бензина теоретически необходимо 14,9 кг воздуха (обычно принимают 15 кг). Однако количество воздуха, действительно расходуемого на приготовление горючей смеси, может быть больше или меньше теоретически необходимого. Поэтому состав горючей смеси принято характеризовать коэффициентом избытка воздуха, обозначаемым буквой α. Коэффициент представляет собой отношение действительного количества воздуха Lд, участвующего в процессе сгорания бензина, к теоретически необходимому количеству воздуха Lт, т.е. α =Lд / Lт .

Если в сгорании 1 кг бензина действительно участвует 15 кг воздуха, т. е. столько, сколько теоретически необходимо, то α = 15/15 = 1, и такую смесь называют нормальной. Горючую смесь, для которой α 1 называют бедной, так как в ней содержится воздуха больше теоретически необходимого количества.

4.3 Режимы работы двигателя и составы горючей смеси на этих режимах

Основными режимами при работе автомобильного двигателя являются пуск двигателя, холостой ход и малые нагрузки, средние нагрузки, полные нагрузки, резкие переходы с малых нагрузок на большие. При пуске двигателя необходима очень богатая смесь (α = 0,2…0,6), так как частота вращения коленчатою вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра.

Работа двигателя в режимах холостого хода и малой нагрузке возможна при α = 0,7…0,8. Горючая смесь, поступающая в цилиндры двигателя, загрязняется остаточными газами, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя.

Автомобильный двигатель большую часть времени работает при режиме средних нагрузок, т.е. с не полностью открытой дроссельной заслонкой. Для этого режима необходима обедненная смесь с коэффициентом избытка воздуха α = 1,05…1,15 (экономическая смесь), обеспечивающая экономичную работу двигателя.

4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания

Первые системы впрыска были механическими, а не электронными, и некоторые из них (например, высокоэффективная система BOSCH) были чрезвычайно остроумными и хорошо работали. Впервые же система механического впрыска топлива была разработана компанией Daimler Benz, а первый серийный автомобиль с впрыском бензина был выпущен еще в 1954 г. Основными преимуществами системы впрыска по сравнению с карбюраторными системами являются следующие:
— отсутствие дополнительного сопротивления потоку воздуха на впуске, имеющему место в карбюраторе, что обеспечивает повышение наполнения цилиндров и литровой мощности двигателя;
— более точное распределение топлива по отдельным цилиндрам;
— значительно более высокая степень оптимизации состава горючей смеси на всех режимах работы двигателя с учетом его состояния, что приводит к улучшению топливной экономичности и снижению токсичности отработавших газов.

Хотя в конце концов оказалось, что лучше для этой цели использовать электронику, которая дает возможность сделать систему компактнее, надежнее и более адаптируемой к требованиям различных двигателей. Некоторые из первых систем электронного впрыска представляли собой карбюратор, из которого удаляли все «пассивные» топливные системы и устанавливали одну или две форсунки. Такие системы получили название «центральный (одноточечный) впрыск».

В настоящее время наибольшее распространение получили системы распределенного (многоточечного) электронного впрыска. На изучении этих систем питания необходимо остановиться более подробно.

4.5 Общее устройство и работа систем распределенного впрыска топлива

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осуществляются внутри впускного коллектора.

Наиболее современная система распределенного впрыска топлива отличается тем, что во впускном тракте каждого цилиндра устанавливается отдельная форсунка, которая в определенный момент впрыскивает дозированную порцию бензина на впускной клапан соответствующего цилиндра. Бензин, поступивший в цилиндр, испаряется и перемешивается с воздухом, образуя горючую смесь. Двигатели с такими системами питания обладают лучшей топливной экономичностью и пониженным содержанием вредных веществ в отработавших газах по сравнению с карбюраторными двигателями.

Работой форсунок управляет электронный блок управления (ЭБУ), представляющий собой специальный компьютер, который получает и обрабатывает электрические сигналы от системы датчиков, сравнивает их показания со значениями, хранящимися в памяти компьютера, и выдает управляющие электрические сигналы на электромагнитные клапаны форсунок и другие исполнительные устройства. Кроме того, ЭБУ постоянно проводит диагностику системы впрыска топлива и при возникновении неполадок в работе предупреждает водителя с помощью контрольной лампы, установленной в щитке приборов. Серьезные неполадки записываются в памяти блока управления и могут быть считаны при проведении диагностики.

Система питания с распределенным впрыском имеет следующие составные части:
· система подачи и очистки топлива;
· система подачи и очистки воздуха;
· система улавливания и сжигания паров бензина;
· электронная часть с набором датчиков;
· система выпуска и дожигания отработавших газов.

1. Назначение и устройство системы питания.
2. Назначение и расположение на автомобиле каждого прибора системы питания.
3. Какое топливо применяется для карбюраторных двигателей? Маркировка и основные свойства.
4. Что называется детонацией? Признаки детонации и ее влияние на работу двигателей.
5. Что называется горючей и рабочей смесями? Какие требования к ним предъявляются? Где они приготовляются?
6. Какие бывают смеси по составу? Что называется коэффициентом избытка воздуха?
7. Какой состав смеси необходим для различных режимов работы двигателя и почему?
8. Признаки работы двигателя на бедной и богатой смесях.
9. Как влияет состав смеси на мощность и экономичность двигателя?
10. Назначение и устройство простейшего карбюратора.
11. Какие требования предъявляют к простейшему карбюратору?
12. Для чего служит устройство компенсации смеси? Какие способы компенсации смеси применяются в современных карбюраторах?
13. Как осуществляется способ компенсации горючей смеси пневматическим торможением истечения топлива?
14. Назначение, устройство и работа главной дозирующей системы карбюратора.
15. Назначение, устройство и работа системы холостого хода.
16. Назначение, устройство и работа системы пуска и экономайзера.
17. Назначение, устройство и работа ускорительного насоса,
18. Назначение и устройство бензинового насоса двигателя ЗИЛ-130.
19. Назначение, устройство и работа воздушного фильтра.
20. Особенности устройства и работа карбюраторов К-88АМ и К-90.
21. Назначение и устройство топливного бака и фильтров.
22. Назначение и устройство впускного трубопровода изучаемых двигателей.
23. С какой целью производится подогрев горючей смеси? Каким способом подогревается смесь в изучаемых двигателях?
24. Устройство глушителя шума выпуска.
25. Как влияет состав отработавших газов на загрязнение окружающей среды?

Читать еще:  Как переделать инжекторный двигатель на карбюраторный ваз 2109
Ссылка на основную публикацию
×
×
Adblock
detector