Краткое определение бензина можно дать такое: легковоспламеняющаяся смесь, состоящая из лёгких фракций различных углеводородов.
Температура испарения бензина
Температура испарения – это тот тепловой порог, при котором начинается самопроизвольное перемешивание бензина с воздухом. Эта величина не может быть однозначно определена одной цифрой, так как зависит от большого количества факторов:
базовый состав и пакет присадок – наиболее весомый фактор, который регулируется при производстве в зависимости от условий эксплуатации ДВС (климата, системы питания, степени сжатия в цилиндрах и т. д.);
атмосферное давление – с повышением давления температура испарения незначительно снижается;
способ исследования этой величины.
Для бензина температура испарения играет особую роль. Ведь именно на принципе испарения построена работа карбюраторных систем питания. Если бензин перестанет испаряться – он не сможет смешаться с воздухом и попасть в камеру сгорания. В современных авто с прямым впрыском эта характеристика стала менее актуальной. Однако после впрыска форсункой топлива в цилиндр именно испаряемость определяет, насколько быстро и равномерно туман из мелких капель перемешается с воздухом. А от этого зависит эффективность работы мотора (его мощность и удельный расход топлива).
В среднем температура испаряемости бензина находится в пределах от 40 до 50°C. В южных регионах эта величина часто бывает выше. Её не контролируют искусственно, так как в этом нет нужды. Для северных районов наоборот, её занижают. Обычно это делается не за счёт присадок, а за счёт формирования базового бензина из наиболее лёгких и летучих фракций.
Температура кипения бензина
Температура кипения бензина – также интересная величина. Сегодня мало кто из молодых водителей знает, что в своё время при жарком климате закипевший в топливопроводе или карбюраторе бензин мог обездвижить авто. Это явление просто создавало пробки в системе. Лёгкие фракции чрезмерно разогревались и начинали отделяться от более тяжёлых в виде пузырьков горючего газа. Автомобиль остывал, газы становились снова жидкостью – и можно было продолжать путь.
Сегодня бензин, реализуемый на АЗС, закипит (с очевидным бурлением с выделением газа) примерно при +80 °C с разбежкой в +-30% в зависимости от конкретного состава того или иного топлива.
Температура вспышки бензина
Температура вспышки бензина – это такой тепловой порог, при котором свободно отделяющиеся, более лёгкие фракции бензина воспламеняются от источника открытого пламени при нахождении этого источника непосредственно над исследуемым образцом.
На практике температуру вспышки определяют методом нагрева в открытом тигле.
В небольшую открытую ёмкость наливают исследуемое топливо. Далее его медленно разогревают без привлечения открытого пламени (например, на электроплите). Параллельно контролируется температура в режиме реального времени. Каждый раз при повышении температуры бензина на 1°C на небольшой высоте над его поверхностью (так, чтобы открытое пламя не соприкасалось с бензином) проводят источником пламени. В тот момент, когда появится огонь, и фиксируют температуру вспышки.
Проще говоря, температура вспышки отмечает тот порог, при котором концентрация в воздухе свободно испаряющегося бензина достигает величины, достаточной для воспламенения под воздействием открытого источника огня.
Температура горения бензина
Этот параметр определяет, какую максимальную температуру создаёт горящий бензин. И здесь также вы не найдёте однозначной информации, отвечающей на этот вопрос одной цифрой.
Как ни странно, но именно для температуры горения главную роль играют условия протекания процесса, а не состав топлива. Если посмотреть на теплотворную способность различных бензинов, то разницы межу АИ-92 и АИ-100 вы не увидите. На самом деле октановое число определяет исключительно стойкость топлива к появлению детонационных процессов. И на качество самого топлива, а уж тем более на температуру его горения, не влияет никак. Кстати, зачастую простые бензины, такие как вышедшие из оборота АИ-76 и АИ-80, более чистые и безопасные для человека, чем тот же AИ-98, модифицированный внушительным пакетом присадок.
В двигателе температура горения бензина находится в пределах от 900 до 1100°C. Это в среднем, при пропорции воздуха и топлива, близкой к стехиометрическому соотношению. Реальная температура горения может как опускаться ниже (например, активация клапана ЕГР несколько снижает тепловую нагрузку на цилиндры), так и повышаться при определённых условиях.
На температуру горения в значительной мере влияет и степень сжатия. Чем она выше, тем горячее в цилиндрах.
Открытым пламенем бензин горит при более низких температурах. Приблизительно, около 800-900 °C.
95 или 92?
95 или 92?
ХОРОШИЙ — ЭТО КАК?
Хороший бензин — это просто: с ним машина «едет», а «пальцы не стучат». Кроме того, морозным утром двигатель сравнительно легко пускается, после заправки не приходится менять свечи, лямбда-зонд, нейтрализатор, а также промывать топливную систему. От чего это зависит? Начнем с главного…
ОЧИ ЧЕРНЫЕ, ОЧМРАЧНЫЕ
Детонация — тема вечная: о ней в очередной раз напоминает «Наша справка». Так вот, чтобы бензин не боялся детонации, его молекулы должны быть, как говорят химики, стабильными. Степень стабильности как раз и определяется величиной октанового числа!
Согласно действующему ГОСТ Р 51105–97 все бензины по величине октанового числа подразделяются на четыре группы — «Нормаль-80», «Регуляр-91», «Премиум-95» и «Супер-98». Чем выше октановое число, тем выше стабильность бензинов, тем лучше они противостоят детонации. Эти 80, 91 и иже с ними — так называемые ОЧИ, то есть октановые числа, определяемые по исследовательскому методу. Есть еще и ОЧМ, которое определяют по моторному методу. В чем разница?
Вопреки известному заблуждению, личные ощущения исследователя или моториста здесь ни при чем. Как ОЧИ, так и ОЧМ определяют на специальной одноцилиндровой установке с переменной степенью сжатия — УИТ-65 или УИТ-85. У нее три простейших карбюратора, позволяющих в динамике менять состав смеси, а также три маленькие топливные емкости. В одну заливают испытуемый бензин, а в две другие — два эталонных: их октановые числа должны отличаться на две единицы. На блок цилиндра вешают пьезокварцевый датчик детонации, позволяющий оценить ее интенсивность как на эталонных бензинах, так и на испытуемом — оттуда и вычисляется требуемое ОЧ. Принцип определения как ОЧИ, так и ОЧМ — ОДИН И ТОТ ЖЕ, только используют разные режимы работы установки. Для ОЧИ двигатель раскручивают до 600 об/мин, а для ОЧМ — до 900 об/мин, да еще и смесь подогревается во впускном ресивере. Принято считать, что ОЧИ условно моделирует условия детонации в городском цикле, а ОЧМ — в шоссейном. Связаны они просто: для бензинов А-80 ОЧМ должно составлять 76; для 91 — 82,5; для 95 — 85; для 98 — 88. А маркировке бензина соответствует именно ОЧИ!
Так можно ли — и нужно ли — менять одно на другое? Сначала разберемся с технологиями…
КРЕКИНГ, РИФОРМИНГ И ПРИСАДКИ
Для получения высокооктанового бензина из нефти используют разные технологии, но только одна из них — каталитического риформинга — позволяет сразу получить нужные октановые числа — вплоть до 99. Но это — дорого: доля такого бензина в общем балансе высокооктановых топлив не достигает 50%. Остальные же вырабатывают по менее сложным технологиям типа каталитического крекинга или гидрокрекинга: для них октановые числа — 82–85. А самые простые и дешевые — прямогонные бензины, но их октановые числа редко превышают 50–60 единиц.
Вот тут-то и возникают различные октаноповышающие присадки и добавки. Их можно условно разделить на три группы. Первая базируется на применении металлсодержащих присадок — достопамятного тетраэтилсвинца, давшего миру этилированные бензины, ныне практически повсюду запрещенные. Присадка была крайне дешевой и жутко эффективной — в общем, мечта нефтяника. Правда, из выпускной трубы двигателя вылетали мерзкие канцерогены… Сейчас на замену ей пришел куда менее опасный ферроцен.
Основная проблема таких присадок — образование налетов и отложений в камере сгорания, на свечах, а также в катализаторах и на рабочих поверхностях датчиков системы управления двигателем. Предельный уровень ферроцена нормирован — 0,017%, но кто за этим следит? Есть присадки на базе никеля, марганца, но проблемы те же…
Другая группа высокооктановых добавок работает по принципу «смесевого» повышения октанового числа: базовый бензин смешивают с чем-то очень-очень стабильным. Чаще всего применяют монометиланилин (ММНА), чье октановое число аж 280. Эти бензины дороже ферроценовых, но главное препятствие к их распространению — нормы Евро III и Евро IV, ограничивающие уровень «ароматики».
Третья, самая продвинутая группа — эфиры и спирты. С экологией в этом случае все в порядке, но и проблемы есть. Во-первых, сравнительно невысокое октановое число — около 120, так что требуется их довольно много — иногда даже больше 10%. Поскольку у эфиров значительно более низкая теплотворная способность, чем у базового бензина, падает «калорийность» топлива. Во-вторых, эфиры агрессивны по отношению к резинам, краске, некоторым пластикам. Именно агрессивность эфиров потребовала нормативного ограничения их концентрации — 15%.
ТАК МОЖНО ИЛИ КАК?
Что же все-таки будет, если вместо бензина А-92 залить 95-й? Сгорят ли клапаны? Да ничего не будет… Старые заблуждения насчет такой жуткой опасности почерпнуты из опыта использования этилированных высокооктановых бензинов в моторах, настроенных на 76-й. Разница в октановом числе — 12 единиц, полученная тетраэтилсвинцом, существенно гасила скорость сгорания и увеличивала температуру отработавших газов и выпускных клапанов. Сегодня же речь только о стоимости бензина. Реальная разница октановых чисел составляет всего 2–3 единицы, а потому уменьшения скорости сгорания, заметной двигателю, практически не будет. Более того, если повышение октанового числа достигнуто добавлением эфиров — а сейчас чаще всего так и бывает, — то скорость сгорания окажется даже выше. Отсюда — небольшая экономия топлива плюс некоторое снижение токсичности выхлопа. Получаемый при этом запас по детонации, наоборот, уменьшает вероятность прогаров поршней и клапанов.
А если раскошелиться вместо А-92 на А-98? В принципе, можно, но здесь уже большого смысла нет. А-98 специально сделан для форсированных бензиновых моторов. Скажем, провести тюнинг двигателя, «зажать» его по степени сжатия, поставить распредвалы с «широкими фазами», тогда — да, другого пути нет. А без этого — пустой перевод денег.
Обратный переход на низкооктановый бензин нужно расценивать как запасной вариант — об этом же говорят инструкции к большинству современных автомобилей. Что касается разговоров о том, что на 95-м чаще выходят из строя свечи, то они вызваны практикой общения с «ферроценовыми» бензинами — с «эфирными» ничего подобного не будет! К сожалению, у нас качество бензина часто определяется не октановым числом, а порядочностью производителя и продавца…
Детонация — процесс самопроизвольного воспламенения топлива от волны сжатия. В бензиновом двигателе топливо поджигает свеча в заданной точке и в заданный момент времени. Фронт пламени создает волну давления, которая, попадая в узкие щели камеры сгорания, многократно отражается и усиливается — навстречу фронту пламени устремляется волна детонации. Ее скорость доходит до 2500 м/с — возникающие звуки в народе называют «стуком пальцев». Последствия детонации для двигателя крайне негативны — перегрев, потеря мощности, рост токсичности. В итоге — прогоревшие клапаны, выломанные перемычки у поршней, проблемы у подшипников коленчатого вала, которым приходится воспринимать повышенные нагрузки.
Чем выше давление в цилиндре, тем интенсивнее волна, вызывающая детонацию. Этому способствуют ранние углы опережения зажигания, которые заставляют гореть топливо еще при сжатии. Провоцирует детонацию и увеличение степени сжатия в двигателе, причем порой непроизвольное: отложения и нагар мало-помалу сокращают реальный объем камеры сгорания. Детонацию провоцирует и неправильная установка фаз газораспределения. Увеличивают ее вероятность повышенные температуры деталей двигателя — лето, пробки и т.п. Но самая банальная причина — плохой бензин.
Температура вспышки бензина
Температуру вспышки бензина определяют для выбора условий хранения и транспортировки. Нефтепродукт относится к легковоспламеняющимся жидкостям. В автомобилях используются тяжелые сорта.
Температура вспышки бензина
У бензина нет собственной химической формулы. Он состоит из десятков компонентов, без учета присадок. Привычное обозначение (А95) является показателем октанового числа.
Под температурой вспышки подразумевается минимальный порог нагрева, при котором пары способны воспламенится от открытого источника. Бензин относится к наиболее пожароопасным нефтепродуктам (воспламенение при минус 40 0 С).
Температура воспламенения – минимальный показатель, при котором топливо-воздушная смесь вспыхивает от стороннего источника и горит от испарения не менее 5 секунд. Температура горения превышает температуру вспышки на 10-15 градусов.
Самовоспламенение – значение, при котором горячие пары бензина возгораются без постороннего источника. Этот показатель необходим для:
разделения веществ по группам пожароопасности;
расчета электрооборудования;
выяснения причин возгораний.
Бензин применяют на моторах с искровым зажиганием. Перед подачей в цилиндр топливо-воздушная смесь нагревается выше температуры вспышки.
2 условия воспламенения:
Бензин находится в газообразном состоянии.
Соотношение топлива и воздуха в пределах возгорания.
Методы определения температуры вспышки
Существует метод открытого и закрытого тигля (емкость для нефтепродуктов). Значения полученных температур отличаются из-за количества скопившихся паров.
Метод открытого тигля включает:
Очистку бензина от влаги при помощи хлорида натрия.
Заполнение тигля до определенного уровня.
Нагрев емкости до температуры на 10 градусов ниже ожидаемого результата.
Поджиг газовой горелки над поверхностью.
В момент воспламенения фиксируется температура вспышки.
Метод закрытого тигля отличается тем, что бензин в емкости постоянно перемешивается. При открывании крышки огонь подносится автоматически.
Аппарат для определения температуры вспышки состоит из следующих компонентов:
электрический нагреватель (мощность от 600 Ватт);
емкость объемом 70 миллилитров;
медная мешалка;
электрический или газовый поджигатель;
термометр.
В зависимости от результатов легковоспламеняемые вещества подразделяются:
особо опасные (при температуре вспышки ниже -20 0 С);
опасные (от -20 0 С до +23 0 С);
опасные при повышенной температуре (от 23 0 С до 61 0 С).
Пределы взрываемости
Граничные концентрации паров горючего в воздухе называются верхним и нижним пределом воспламенения. Они являются главными характеристиками взрывоопасности топлива. Если концентрация превысит верхний предел, то бензин не взорвется, а сгорит. Иногда процесс сопровождается резкими скачками давления.
Значение между пределами называется промежутком взрываемости. У бензина он составляет 0,7-8%. Горение в емкости обязательно сопровождается взрывом, по причине большого давления и низкой температуры кипения. При этом химическая энергия переходит в тепловую. Процесс сопровождается обширным выделением газов.
Верхний и нижний предел зависят от следующих параметров:
состава реагентов;
повышения температуры из-за роста энергии активации;
добавления в топливо негорючих присадок.
Таблица содержит основные показатели пожароопасности бензина.
Температура вспышки
-40 0 С
Температура самовоспламенения
200-500 0 С
Верхний предел
-5 0 С
Нижний предел
-40 0 С
Взрывоопасная концентрация паров в кислороде
1-6%
В двигателе автомобиля опасно детонационное горение. При нем теплота распространяется с большой скоростью. Процесс сопровождается износом деталей и нарушением газообмена.
Среди причин выделяют:
нарушение условий эксплуатации;
выбор низкого октанового числа;
неподходящая калильность свечи зажигания.
Предотвратить детонацию можно:
Эксплуатацией мотора на высоких оборотах. При разгоне сокращается период сгорания бензина.
Применением интеркулера для охлаждения наддувочного воздуха перед цилиндром.
Правильным подбором свечей.
Переходом на высокое октановое число.
Торможением двигателем.
Транспортировку бензина регламентирует ГОСТ Р 52734. Цистерны поездов и автомобилей должны иметь специальное обозначение.
Перед заполнением емкость моют и сушат. Бензовоз должен быть оборудован заземляющим устройством. Водители проходят подготовку, организациям выдается особая лицензия.
Какова температура горения бензина?
В качестве горючего для многих легковых автомобилей используется бензин. Это смесь углеводородов, которая имеет температуру кипения от 30 до 205 градусов. Кроме углеводородов, в составе бензина есть примеси азота, серы и кислорода. В зависимости от числа тех или иных компонентов бензин для авто делится на различные марки, которые имеют разные эксплуатационные качества:
АИ 92.
АИ 95.
АИ 98.
С ужесточением требований к экологии бензины, обладающие более низким октановым числом (А 76 или АИ 80), а значит, более грязным химическим составом, сегодня не изготавливаются.
Главные качества
Главные качества топлива – его химический состав, способность к испарению, горению, самовоспламенению, возникновению отложений, а также коррозионная устойчивость и стойкость к возгоранию.
Физико-химические характеристики зависят от того, какие углеводороды и в каких соотношениях присутствуют в топливе. Температура замерзания топлива составляет -60 градусов, в случае использования особых присадок можно снизить этот показатель до -71 градуса.
Топливо активно испаряется при температуре +30 градусов, и с ростом температуры процесс испарения осуществляется активнее. Когда степень его паров в воздухе составляет 74-123 граммов на м3, формируется взрывоопасная смесь.
Состав фракции топлива воздействует на эксплуатационные качества. При изготовлении крайне необходимо получить оптимальное соотношение легких и тяжелых соединений, чтобы получить достаточно высокое испарение при низких температурах и не допустить сбоев в работе мотора из-за создания паровых пробок в топливном проводе, которые могут появиться ввиду активного испарения большого числа легких соединений.
Ввиду этого бензины, которые используются в местностях с жарким климатом и в районах полярного круга, обладают разным химическим составом для того, чтобы обеспечить нужные эксплуатационные качества. Бензин получается несколькими способами:
путем прямой перегонки нефти;
путем отбора конкретных фракций;
крекинг;
риформинг.
Главная составляющая топлива, которая получена способом прямого перегона – соединения алканов. При крекинге и риформинге они трансформируются в разветвленные алканы и ароматические компоненты. Два последних метода позволяют получить горючее с высоким октановым числом марок АИ 92 и 95.
Октановое число
Наименование марки топлива состоит из букв и цифр. Буквы А или АИ означают способ выявления октанового числа:
№
Полезная информация
1
моторный (А)
2
исследовательский (ИА)
А цифра означает октановое число (92, 95).
Наименование октанового числа показывает такое качество, как устойчивость топлива к возгоранию. Цифра эта условная. В качестве эталона используется изооктан, устойчивость к возгоранию которого очень высокая, и равняется 100. Разметка октанового числа была создана в начале прошлого века. Оно выявлялось составом изооктана в меси с нормальным гептаном.
Соответственно, топливо марки АИ 92 эквивалентно по своей устойчивости к возгоранию 92% смеси изооктана с гептаном, АИ 95 – 95%. Октановое число может быть выше 100, если антидетонационные качества бензина выше, чем у чистого изооктана.
Данное значение очень важное, так как возгорание приводит к быстрой деформации цилиндро-поршневой группы. Обусловлено это скоростью распространения языков пламени – до 2,5 км в секунду, тогда как в оптимальных условиях огонь распространяется со скоростью не больше 60 метров в секунду.
Чтобы увеличить антидетонационные качества, можно или добавить присадки, в которых содержится свинец, или поменять фракционный состав при получении. Первый вариант можно легко получить из топлива АИ 92, АИ 95 или 98, но на сегодняшний день от него отказались.
Так как, хотя такие присадки намного увеличивают эксплуатационные характеристики бензина и имеют низкую себестоимость, они также очень токсичны и оказывают пагубное влияние на экологию, чем чистое топливо.
А также разрушают каталитический нейтрализатор транспортного средства (температура сгорания этилированного топлива выше, чем у неэтилированного, в итоге керамические соединения нейтрализатора спекаются, и устройство подвергается поломке).
В качестве присадок могут быть применены и другие соединения, менее ядовитые, такие как ацетон или этиловый спирт. К примеру, если влить 100 мл спирта в литр топлива АИ 92, то октановое число возрастет до 95. Но использование таких средств экономически нецелесообразно.
Химическая стабильность
Рассматривая химические качества бензина, нужно делать основной акцент на то, как долго состав углеводородов будет неизменным, так как при долгом складировании более легкие компоненты исчезают, и эксплуатационные качества сильно снижаются.
В частности, остро проблема стоит тогда, если из бензина с минимальным октановым числом получилось горючее более высокой марки (АИ 95) методом добавления в его состав пропан или метана. Их антидетонационные качества выше, чем у изооктана, но и рассеиваются они моментально.
Температура кипения бензина является интересной величиной. Сегодня мало кто из юных автомобилистов знает, что когда-то при высоких температурах воздуха закипевшее в топливном проводе или карбюраторе горючее могло заблокировать транспортное средство. Такое явление способствовало образованию сбоев в системе.
Легкие фракции сильно нагревались и отделялись от более тяжелых в форме пузырьков горючего газа. Машина остывала, газы превращались в жидкость – и можно было продолжать движение. Сегодня бензин, используемый на заправках, закипит примерно при +80 градусах.
Температура вспышки топлива
Температура вспышки топлива является тепловым порогом, при котором свободно отделяющиеся, более легкие фракции топлива начинают гореть от источника открытого огня при нахождении этого источника над исследуемым образцом.
На практике показано, что температура вспышки определяемся способом нагрева в открытом тигле. В маленькую открытую емкость наливают трестируемое топливо. Потом его медленно нагревают без привлечения открытого пламени.
Основы теплотехники
Топливо и его горение
Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха. Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:
при сгорании выделяют достаточно большое количество теплоты;
не дают продуктов сгорания, губительно действующих на окружающий растительный и животный мир;
встречаются в больших количествах в природе или легко получаются при переработке других веществ;
легко добываются и транспортируются на большие расстояния;
быстро воспламеняются.
Топливо, добываемое из недр земли в готовом виде, называют естественным , а получаемое путем переработки горючих веществ и природного топлива – искусственным . Как естественное, так и искусственное топливо подразделяют на твердое, жидкое и газообразное.
В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь. К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.
По назначению топливо подразделяют на энергетическое и технологическое . К энергетическим относят все низкосортные топлива, которые можно сжигать на электростанциях, в производственно-бытовых и других тепловых установках в натуральном виде или после переработки. Это антрацит, бурые угли, торф, природный газ, а также продукты переработки других топлив. К технологическому топливу относят высокосортное топливо и коксующиеся угли.
По методу добычи и потребления различают местное и привозное топливо.
Составные части топлива
Топливо состоит из органической и минеральной частей. Органическую часть топлива составляют следующие химические элементы: углерод (С), водород (Н2), кислород (О2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части. Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.
Наиболее ценные из перечисленных элементов топлива – углерод и водород. Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.
Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность. Минеральные составляющие после сжигания образуют твердый остаток – золу.
Сущность процесса горения
Горение есть окисление горючих элементов топлива кислородом, сопровождающееся выделением теплоты. В зависимости от скорости распространения пламени различают нормальное горение и горение со взрывом . При нормальном горении скорость распространения пламени равна 15-25 м/с, а при взрывном горении – 2000-3000 м/с. Чтобы топливо начало гореть, его необходимо нагреть до определенной температуры, называемой температурой воспламенения . Так, например, каменный уголь воспламеняется при температуре 225-375 ˚С, сухой торф – 225-300 ˚С, дрова – 350-450 ˚С, керосин – 380 ˚С, бензин – 415 ˚С, метан (СН4) – 650-700 ˚С и т. д.
При нагревании топлива до температуры воспламенения начинается распад горючей массы на составные элементы, которые затем окисляются кислородом и выделяют теплоту. Эта теплота способствует нагреву массы близлежащего топлива, в которых начинают протекать аналогичные процессы (распад и окисление) , и, таким образом, вся масса топлива, находящегося в топке, начинает гореть. Для того, чтобы процесс горения не прекратился, выделяющаяся теплота должна поддерживать температуру топлива не ниже температуры воспламенения.
Горение может быть полным и неполным. Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем. Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.
Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения. На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.
Количество воздуха, необходимое для полного сгорания топлива
Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода. Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода. Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.
При определении количества воздуха, необходимого для полного горения, следует учитывать, что в топливе тоже содержится некоторое количество кислорода, а также то, что массовая доля кислорода в воздухе – 23,2 %. В общем случае формула для определения массового количества воздуха для полного сгорания топлива имеет вид:
где: Ср , Нр , Sр , Ор – соответственно массовое содержание углерода, водорода, серы и кислорода в топливе.
При сгорании топлива часть кислорода воздуха не успевает вступить в реакцию окисления, поэтому для обеспечения полного сгорания топлива следует к нему подводить воздух с некоторым избытком по сравнению с теоретически необходимым количеством. Отношение действительного количества воздуха к теоретически необходимому количеству называют коэффициентом избытка воздуха . На практике этот коэффициент (в зависимости от вида топлива) может принимать значения от 1,05 (газообразное и пылевидное топливо) до 1,8 (твердое топливо) .
Теплота сгорания топлива
Важнейшая характеристика топлива – теплота его сгорания – количество теплоты, выделившейся при полном сгорании единицы количества топлива (для жидких и твердых топлив – кг, для газообразных – м 3 ) . Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания Qв называют теплоту, выделяемую при полном сгорании единицы количества топлива, в результате которого образующаяся влага конденсируется и выделяется в виде жидкости из продуктов сгорания. Если в результате сгорания единицы количества топлива образуемая влага остается в продуктах сгорания в парообразном состоянии, то выделяемую при этом теплоту называют низшей теплотой сгорания Qн . Эта величина меньше высшей теплоты сгорания топлива на теплоту парообразования (конденсации) влаги, образуемой при сжигании единицы количества топлива.
Теплоту сгорания топлива, кДж/кг , можно определить опытным путем (при сжигании порции топлива в специальном приборе – калориметре) или расчетом (по формулам Менделеева) , если известен элементарный состав топлива.
Например, для твердого топлива:
Qв = 339С + 1250Н – 108,85(О – S) ;
для жидкого топлива:
где: С , Н , О , S и W – соответственно процентное содержание углерода, водорода, кислорода, серы и влаги в рабочем топливе.
Условное топливо
При расчете расхода топлива, а также топливных ресурсов пользуются понятием условное топливо . Это реальное топливо, теплота сгорания которого равна 29,3 МДж/кг. Для перевода любого топлива в условное, пользуются тепловым эквивалентом, который получается от деления теплоты Qрц сгорания данного топлива на теплоту сгорания условного топлива, т. е. на 29300 кДж/кг или 29,3 МДж/кг. Так, например, для торфа Эт= 8500/29300 = 0,29, т. е. 1 тонна торфа по своей тепловой ценности равноценна 0,29тонны условного топлива.
Температура горения топлива
Следует различать теоретическую и действительную температуру горения. Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность. Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.
Действительная температура горения (при коэффициенте избытка воздуха равном 1,0) : антрацита – 2270 ˚С, торфа – 1700 ˚С, мазута – 1125 ˚С, природного газа – 2000 ˚С.
Способы сжигания топлива
В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.
Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива. При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.
Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.
Факельный способ сжигания топлива (рис. 1б) , в отличие от слоевого, заключается в том, что частицы топлива движутся вместе с газовоздушным потоком в топочном пространстве. Поэтому масса частиц должна быть как можно меньше, и они должны удерживаться в газовоздушном потоке. Этим обеспечивается очень тщательное перемешивание частичек топлива с воздухом, интенсивное их горение, получается более однородный, устойчивый факел горения и происходит наиболее полное выгорание горючих элементов, составляющих горючую массу топлива. Поэтому при факельном способе применяют твердое топливо в виде очень мелких частичек (пыли) , размеры которых составляют доли миллиметра.
Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.
Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы. Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.
Скачать теоретические вопросы к экзаменационным билетам по учебной дисциплине “Основы гидравлики и теплотехники” (в формате Word, размер файла 68 кБ)
Скачать рабочую программу по учебной дисциплине “Основы гидравлики и теплотехники” (в формате Word):
Скачать календарно-тематический план по учебной дисциплине “Основы гидравлики и теплотехники” (в формате Word):
Процесс сгорания топлива
Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.
Сгорание
В процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания – это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.
Для процесса сгорания требуются три элемента:
1. Воздух 2. Топливо 3. Искра зажигания
Эти три элемента иногда упоминаются как “триада сгорания”. Если один элемент триады отсутствует, сгорание невозможно. Двигатель внутреннего сгорания рассчитывается на объединение этих трех элементов, поддерживая полный контроль над процессом.
Воздух состоит из атомов азота (N), кислорода (О ) и других газов. Большую часть воздуха составляет азот, являющийся инертным, негорючим газом. Воздух не горит, но в нем содержится достаточное количество кислорода, что позволяет поддерживать сгорание.
Топливо
Бензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками. Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа. В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.
В двигателе внутреннего сгорания воздух и топливо поступают в камеру сгорания, и затем генерируется искра зажигания, вызывающая сгорание. Перед зажиганием воздушно-топливной смеси двигатель нагревается и сжимает смесь. Нагревание помогает процессу смесеобразования, а сжатие увеличивает энергию, генерируемую при сгорании.
В двигателе внутреннего сгорания сгорание происходит в течение доли секунды (приблизительно в течение 2 миллисекунд). В этот момент разрушаются связи между атомами водорода и углерода. Разрушение связей приводит к высвобождению энергии в камере сгорания, толканию поршня вниз и инициированию вращения коленчатого вала. После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).
Говоря языком химии, полное сгорание в двигателе внутреннего сгорания выражается формулой:
НС + О2 = Н2 О + СО2
топливо + кислород = вода и двуокись углерода
Абсолютно эффективный двигатель внутреннего сгорания на выпуске имел бы только воду (Н О) и двуокись углерода (СО ), что соответствует Данной выше химической формуле. Это означало бы, что все углеводороды в процессе сгорания разложились. К сожалению, дело обстоит не так.
Неэффективное сгорание -это главная причина наличия вредных веществ в выхлопе автомобиля. Эффективное сгорание ведет к наименьшей токсичности выхлопа. Эффективность сгорания увеличивается посредством корректировки соотношения “воздух/топливо”.
Инженеры-автомобилестроители определили, что токсичность выхлопа автомобиля можно уменьшить, если бензиновый двигатель работает с соотношением “воздух/топливо”, равным 14.7:1. Технический термин известен как “стехиометрическое соотношение”. Стехиометрическое соотношение означает химически правильную воздушно-топливную смесь, которая производит желаемую химическую реакцию, входе которой происходит полное сгорание топлива с желаемой токсичностью выхлопа. Соотношение “воздух/топливо” 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение “воздух/топливо” также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.
Бедная воздушно-топливная смесь
Обеднение воздушно-топливной смеси обычно вызывается неисправностью в двигателе. Обеднение – это состояние, когда двигатель получает слишком много воздуха или кислорода. Причиной слишком высокого уровня кислорода могут стать утечки вакуума или неисправная система подачи топлива.
Богатая воздушно-топливная смесь
Богатая воздушно-топливная смесь – это также указание на неисправность двигателя. Обогащение – это состояние, когда двигатель не может сжечь все топливо, которое вошло в камеры сгорания. Состояние обогащения может возникать в результате высокого давления топлива, проблем с опережением зажигания или низкой компрессии.
Имеются два типа аномального сгорания, которое может происходить в двигателе: детонация и преждевременное воспламенение. Детонация – это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам. Преждевременное воспламенение – это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной. Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.
Стехиометрическая воздушно-топливная смесь обеспечивает наилучший компромисс между динамическими характеристиками, экономичностью и токсичностью выхлопа. При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов. Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.
Побочные продукты сгорания
Поскольку двигатель внутреннего сгорания не имеет абсолютной эффективности, в процессе сгорания генерируются три нежелательных побочных продукта: 1. Углеводороды (НС) 2. Одноокись углерода (СО) 3. Оксиды азота (N0 X )
Неполное сгорание вызывает выделение углеводорода и одноокиси углерода. Выделения углеводорода – это углеводороды, которые не разрушились в процессе сгорания. Одноокись углерода образуется, потому что не имеется достаточного количества атомов кислорода, чтобы связать углерод.
В идеальном случае азот должен проходить камеру сгорания неизменным. Но когда температура в камере сгорания достигает приблизительно 1 371 °С (2 500 °F), атомы азота и кислорода связываются, образуя (N0 X )
Химическая формула процесса сгорания, при котором образуются оксиды азота выглядит следующим образом:
НС + О2 + N2 = Н2 О + СО + N0x
Формула “NO ” используется для оксидов азота, потому что OHci отражает комбинацию атома азота и любого количества атомов кислорода. Например, оксид азота (N0) состоит из одного атома азота и одного атома кислорода, в то время как двуокись азота (N0 ) состоит из одного атома азота и двух атомов кислорода.
Высокое содержание НС
Высокое содержание НС может быть вызвано недостаточной эффективностью системы зажигания, неправильным опережением зажигания или неправильными фазами газораспределения, протечками вакуума, попаданием масла или низкой степенью сжатия. Доля углеводородов измеряется в количестве частиц на миллион.
Высокое содержание СО
Высокое содержание СО может быть вызвано такими факторами, как: • Чрезмерно богатая воздушно-топливная смесь • Загрязнение воздушного фильтра • Выход из строя клапана PCV • Загрязнение топлива маслом • Заедание или протечки в топливной форсунке На исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.
NOx генерируются при высокой температуре горения (выше приблизительно 1 371 °С (2 500 °F)) и обычно образуются, если температура горения не контролируется. Содержание оксидов азота измеряется в количестве частиц на миллион.
Так же рекомендуем прочитать Вам интересную статью Кузовные детали