Принцип работы амортизатора
Autoservice-ryazan.ru

Автомобильный портал

Принцип работы амортизатора

Амортизатор автомобиля — для чего нужен и как работает

Основные нагрузки при движении авто в подвеске воспринимает на себя пружинистый элемент – рессора или винтовая пружина. За счет возможности изгибаться или сжиматься эти элементы принимают вертикальное движение колеса, которое оно получает от дорожного покрытия, предотвращая полную передачу этого движения на кузов или раму авто.

Однако в работе этих элементов имеется один серьезный недостаток – при работе на изгиб или сжатие, в них образуется инерционные колебательные движения, которые как раз на кузов и передаются, раскачивая его. При этом эти колебательные движения приводят к тому, что колесо теряет постоянный контакт с дорожным полотном, что сказывается на управляемости авто.

Чтобы убрать эти колебательные движения, в конструкцию подвески включены амортизаторы. В их задачу входит снижение инерции в пружинистых элементах за счет создания сопротивления, поглощающего данную энергию.

Внешне все амортизаторы очень схожи и представляют собой цилиндрический продолговатый герметичный корпус, из которого выходит шток, перемещающийся внутри его. В нижней части корпуса имеется крепежный элемент, которым амортизатор крепится к оси колес. В авто, использующих стойки МакФерсона, амортизатор помещен в саму стойку, а вот она уже прикрепляется к ступице колеса. Шток в верхней части тоже имеет крепежные элементы, которым он присоединен к кузову или раме авто.

А внутренняя конструкция отличается. Они бывают двухтрубными и однотрубными. Из-за конструктивных особенностей амортизаторы подразделяются на масляные и газовые. Существуют еще так называемые газомасляные, но они скорее — подвид масляных. Интересно, что в газовых тоже присутствует масло, которая является рабочей жидкостью амортизатора.

Двухтрубные амортизаторы. Конструкция, принцип действия

Двухтрубные амортизаторы производятся как масляные, так и газомасляные. Внутри такого корпуса установлен резервуар, который является рабочим цилиндром. Между корпусом и этим цилиндром имеется небольшое расстояние.

В нижней части цилиндра установлен перепускной клапан, который называется клапаном прямого хода. В этот цилиндр помещен шток с поршнем на конце. В поршне проделаны отверстия, которые являются клапаном обратного хода. Вся внутренняя полость рабочего цилиндра заполнена маслом.

Газовый и масляный амортизаторы

Работает этот амортизатор так: при движении колеса вверх, когда производится разгибание рессоры или сжатие пружины, шток начинает перемещаться вниз – при этом поршень давит на масло, часть его уходит через клапан прямого хода в пространство между стенками корпуса и рабочего цилиндра, а часть через клапан обратного хода переходит в надпоршневое пространство. Поскольку пропускная способность клапанов незначительная, то в подпоршневом пространстве создается избыточное давление, которое является противодействием инерции пружинистых элементов.

При возврате рессоры или пружины в исходное положение – происходит обратное действие – поршень движется вверх, часть масла переходит из надпоршневого пространства в подпоршневое, а часть возвращается из пространства между стенками. Таким образом гасятся все колебательные движения пружинистых элементов.

Ещё кое-что полезное для Вас:

Видео: Monroe — двухтрубные амортизаторы.

В масляном амортизаторе все внутренние полости не полностью заполнены маслом, поскольку требуется определенное место для вытеснения масла при работе. То есть часть пространства заполняет воздух. В этом и кроется основной недостаток этих амортизаторов. Масло при работе нагревается, что приводит к снижению его вязкости, а затем и вспениванию масла. Эти эффекты связаны с тем, что охлаждение двухтрубного амортизатора затруднено, и приводят они к ухудшению его работы.

Частично данная проблема устранена в газомасляных амортизаторах. В них свободное пространство заполнено не воздухом, а газом (зачастую использую азот), причем он находится под давлением. Избыточное давление газа приводит к тому, что масло не может вспениться, но нагрев масла и потерю вязкости устранить так и не удалось.

Однотрубные амортизаторы. Конструкция и принцип действия

Конструкция однотрубных амортизаторов несколько отличается, и они все делаются газовыми. Особенностью их является отсутствие внутреннего рабочего цилиндра – корпус амортизатора им и является. Внутри на штоке так же имеется поршень, но на нем уже размещены оба клапана – и прямого и обратного хода.

Также в конструкцию входит еще один поршень-поплавок, ни с чем не связанный, в его задачу входит разделение масла и газа, который находится внизу цилиндра.

Вся верхняя полость до поршня поплавка заполнена маслом, а нижняя – газом, причем с высоким давлением.

Видео: Как определить разборный или нет амортизатор стойка

Работа данного амортизатора такова: при сжатии, когда колесо движется вверх, шток с поршнем движется вниз – часть масла перетекает в надпоршневое пространство, остаток же смещается вниз, толкая поршень-поплавок и газ сжимается. При движении колеса вниз – производится обратное действие.

Из-за отсутствия внутри дополнительного резервуара, в однотрубном амортизаторе охлаждение масла происходит более эффективно, а отсутствие свободного пространства, поскольку все оно до поршня-поплавка заполнено маслом, исключает вспенивание.

Но имеется и отрицательное качество в работе амортизатора такой конструкции – при возвратно-поступательном движении штока с поршнем, с постоянным воздействием масла на газ, которое заставляет его постоянно сжиматься и разжиматься, происходит нагрев газа, сопровождающееся увеличением его объема и как следствие – давления. В итоге при активной работе амортизатора жесткость его возрастает из-за увеличивающегося давления внутри амортизатора.

Основные неисправности амортизаторов

На какие элементы подвески влияют неисправные амортизаторы

Неисправностей амортизаторов не так уж и много, но все они приводят к тому, что данные элементы заменяются, поскольку они не ремонтопригодны.

Что касается масляных и газомасляных амортизаторов, то самой частой неисправностью в них является разгерметизация, вследствие которой часть масла выходит наружу. А из-за недостатка масла нарушается общая работоспособность, амортизатор уже не способен выполнять полностью свою функцию.

Вполне возможен и изгиб штока, в результате чего он заклинивает в одном из положений.

Ударные нагрузки, приводящие к появлению вмятин на корпусе, не всегда оказывает значительное влияние на работу двухтрубного амортизатора. Ведь между ним и рабочим цилиндром имеется расстояние, поэтому вмятина приводит лишь к уменьшению свободного пространства внутри.

А вот в однотрубном амортизаторе вмятина на корпусе является губительной. Она перекроет возможность поршню со штоком перемещаться – амортизатор заклинит и перестанет работать.

Также в однотрубном амортизаторе встречается и разгерметизация корпуса, которая приводит к нарушению работы.

Как проверить амортизатор?

Выявить выход из строя амортизатора вполне возможно и самому. Для начала нужно внимательно проверить его на наличие подтеков. Даже незначительные следы масла на поверхности будут указывать на разгерметизацию.

Если наблюдаются вмятины на корпусе масляного или газомасляного амортизатора, то еще не означает, что он вышел из строя, а вот изгиб штока будет сигнализировать о надобности в замене.

Выявить неработоспособность амортизатора можно и путем раскачивания кузова. Однако таким способом можно выявить только полную неисправность, частичное вытекание масла выявить раскачкой не удастся.

Проверяется амортизатор так: нужно с силой надавить на кузов авто со стороны проверяемого амортизатора, а затем отпустить. При исправном амортизаторе кузов сразу же станет в исходное положение, а вот если он неисправен, то кузов будет раскачиваться.

Самым же достоверным способом проверки состояния амортизатора является диагностика на специализированном стенде. Такая диагностика не только покажет состояние амортизаторов, она полностью оценит состояние подвески авто.

Принцип работы амортизатора

Амортизаторы.

Упругие элементы подвески.

Основой подвески любого современного автомобиля является упругий элемент – пружина, рессора или торсион. Хотя эти конструкции прекрасно справляются со своей основной задачей – смягчением толчков, вызванных неровностями дороги и неравномерностью движения, всем им присущ один существенный недостаток. Полученная в результате механического воздействия кинетическая энергия запасается в упругом элементе и вызывает ответные колебания. Естественно, возникающие колебания подрессоренной части автомобиля не способствуют комфорту и безопасности как водителя, так и пассажиров.

Для чего нужны амортизаторы.

Для гашения колебаний, создаваемых упругими элементами подвески автомобиля используются амортизаторы. Наибольшее распространение получили так называемые гидравлические амортизаторы, так как в качестве рабочего элемента в них используется жидкость. Часто такие амортизаторы также называют масляные, потому что используемая в них жидкость представляет собой специальное масло. (К гидравлическим также относятся и газонаполненные амортизаторы).

Конструкция амортизаторов.

Конструктивно любой гидравлический амортизатор состоит из заполненного рабочей жидкостью (маслом) цилиндра и помещенного внутрь него поршня. Внутри поршня имеются узкие отверстия, предназначенные для пропускания масла. Поршень перемещается под воздействием штока, закрепленного на кузове автомобиля, а цилиндр амортизатора крепится на подвижной части подвески автомобиля (рычаге или опоре подшипника колеса).

Принципы работы амортизаторов.

Принцип работы гидравлических амортизаторов заключается в демпфировании возникающих колебаний путем прогона масла через клапаны поршня. Механическая энергия колебаний упругих элементов подвески при этом переходит в нагрев рабочей жидкости амортизатора. Благодаря значительному гидравлическому сопротивлению масла, затухание колебательного процесса происходит практически не начавшись.

Проблемы, возникающие при работе амортизаторов.

Однако, в процессе сжатия гидравлического амортизатора в его цилиндр входит часть штока поршня и рабочий объем цилиндра уменьшается. Так как используемое в амортизаторах масло (как и любая жидкость) практически не сжимается, то приходится использовать специальные устройства для компенсации занимаемого штоком поршня объема. В зависимости от конструкции таких устройств можно выделить два основных типа амортизаторов: однотрубные и двухтрубные.

Двухтрубные амортизаторы.

Для создания дополнительного объема в двухтрубных амортизаторах используется дополнительный, соосный основному цилиндр, немного большего диаметра. При сжатии такого амортизатора часть рабочей жидкости проходит через отверстия поршня в пространство над поршнем. Другая часть масла, соответствующая по объему входящему в цилиндр амортизатора штоку, вытесняется из основного цилиндра в дополнительный через расположенный в дне основного цилиндра клапан. При растяжении (отбое) амортизатора процесс происходит в обратном направлении. Отличие состоит лишь в том, что при сжатии амортизатора основное усилие приходится на клапан, а при растяжении – на поршень.

Однотрубные газонаполненные амортизаторы.

В однотрубных амортизаторах в качестве компенсационной полости используется часть цилиндра, которая заполняется газом под высоким давлением. В качестве наполнителя обычно используется нейтральный азот, закачанный под давлением 15-20 кгс/см2. Несмотря на распространенное название такого амортизатора «газовый», в качестве рабочего тела здесь также используется масло, а не газ. Сжатие газа лишь позволяет скомпенсировать объем, вытесняемый штоком поршня. Используемый в однотрубных амортизаторах газ закачан в отдельную камеру и отделен от рабочей области цилиндра разделительным поршнем. При этом, в отличие от двухтрубных амортизаторов, вся нагрузка по демпфированию колебаний, как при сжатии, так и при растяжении (отбое) амортизатора приходится на клапаны основного поршня.

Читать еще:  Принцип работы топливной системы инжекторного двигателя

Каждая из основных конструкций амортизаторов имеет свои достоинства и недостатки.

Недостатки и преимущества двухтрубных амортизаторов.

Основной недостаток двухтрубных амортизаторов, это вспенивание (кавитация) масла, возникающее при интенсивной работе амортизатора. Кроме того, рабочая площадь (сечение основного цилиндра) у двухтрубных амортизаторов меньше, чем у однотрубных, что существенно уменьшает эффективность его работы при небольших смещениях штока. И, наконец, двухтрубный амортизатор весьма чувствителен к своему расположению – при углах установки, превышающих 45 градусов, находящийся в компенсационной камере воздух может попасть в основной цилиндр и нарушить работу амортизатора. Основным преимуществом двухтрубных амортизаторов является их сравнительная невысокая стоимость, благодаря чему, ими укомплектованы большинство серийных автомобилей.

Особенности однотрубных амортизаторов.

Конечно, имеются свои недостатки и однотрубных амортизаторов. Основная проблема заключается в том, что изготовление таких амортизаторов требует очень большой точности, что, соответственно, отражается на их стоимости. Например, чтобы обеспечить необходимое уплотнение штока, шероховатость его поверхности должна быть менее 0,1 микрона. Вторым недостатком газонаполненных амортизаторов является их большая (по сравнению с двухтрубными) длина. Кроме того, при толстом штоке и больших смещениях поршня, наполненная газом камера становится как бы дополнительной пружиной, что также не лучшим образом отражается на управляемости автомобиля.

Преимущества однотрубных амортизаторов.

Несмотря на присущие однотрубным амортизаторам недостатки и их сравнительно высокую стоимость, газонаполненные амортизаторы превосходят двухтрубные по основным техническим параметрам. Особенно важно то, что однотрубные амортизаторы способны работать при весьма неблагоприятных условиях и выдерживать значительные нагрузки. Благодаря этой особенности, однотрубные амортизаторы получили широкое распространение в спортивных автомобилях. Кроме того, гидравлическая характеристика однотрубных пневматических амортизаторов имеет более «жесткий» характер, что обеспечивает более уверенный контакт колес автомобиля с дорожным покрытием, улучшает устойчивость, плавность хода, управляемость, топливную экономичность и тормозные свойства.

Газонаполненные амортизаторы с выносными резервуарами.

Дальнейшее развитие газонаполненные амортизаторы получили в конструкции спортивных амортизаторов с выносными резервуарами. Выносная камера этих амортизаторов позволила значительно увеличить рабочий объем газа и масла, что существенно улучшило их технические характеристики (в частности, облегчило процесс охлаждения амортизатора). Кроме того, система клапанов, соединяющая рабочий цилиндр и дополнительную камеру, позволяет произвести точную независимую регулировку усилий сжатия и отбоя. Практически, конструкция газонаполненных амортизаторов с выносной камерой объединила достоинства однотрубных и двухтрубных амортизаторов.

К сожалению, при всех своих преимуществах, стоимость таких амортизаторов оказалась довольно-таки высокой, что ограничило их применение в серийном производстве автомобилей.

Двухтрубные гидропневматические амортизаторы.

Разумным компромиссом между однотрубным газонаполненным амортизатором и классическим гидравлическим амортизатором стал двухтрубный гидропневматический амортизатор. Благодаря закачанному под небольшим давлением (4 атм) инертному газу, значительно улучшается эффективность его работы. Кроме того, разделяя рабочую жидкость и резервуар, инертный газ (азот) исключает явление кавитации (вскипания) масла. Гидравлические характеристики двухтрубных гидропневматических амортизаторов с газовым подпором низкого давления очень близки к характеристикам однотрубных амортизаторов с газовым подпором высокого давления. При этом, изготовление таких устройств не требует использования высокоточных деталей, что позволяет гидропневматическим амортизаторам оставаться в ценовой категории классических двухтрубных амортизаторов.

Устройство и принцип работы амортизаторов

Со времен появления первых автомобилей перед конструкторами стоял вопрос поиска оптимального способа гашения колебаний кузова, возникающих при преодолении неровностей. Наилучшим решением, применяемым и сегодня, стало интегрирование в состав подвески автомобиля специальных устройств — амортизаторов. На данный момент повсеместное распространение получили гидравлические телескопические амортизаторы. Гашение колебаний кузова и колес происходит в них за счет жидкостного трения, возникающего при прохождении жидкости через узкие отверстия в поршне — клапаны. Таким образом, механическая энергия колебаний переводится в тепловую. От характеристик амортизаторов зависят такие важные показатели, как устойчивость, управляемость и плавность хода автомобиля. Современные амортизаторы, имея в своей основе общий принцип работы, отличаются по типам и особенностям конструкции.

История появления амортизатора

Первые автомобили с рессорной подвеской обладали неприятным свойством: при преодолении неровностей их кузов сильно раскачивался. Изначально данная проблема частично решалась сама собой, поскольку в многолистовых рессорах наблюдался эффект межлистового трения, который способствовал гашению колебаний кузова. Но этого было недостаточно.

Фрикционные амортизаторы

Поэтому следующим этапом стало добавление в состав подвески отдельного демпфирующего элемента. Одними из первых таких устройств были амортизаторы сухого трения с фрикционными дисками, разработанные в начале прошлого века.

В 1950-х годах стали применяться поршневые масляные амортизаторы телескопического типа, в основе работы которых лежал принцип жидкостного трения. Их устройство, позаимствованное из конструкции авиационных шасси, применяется в подвеске автомобилей и сегодня.

Функции амортизатора

Передние и задние амортизаторы являются демпфирующими элементами подвески автомобиля. Работая в паре с упругими элементами подвески (пружинами или торсионами), амортизаторы выполняют следующие основные функции:

  1. гашение колебаний кузова и колес автомобиля;
  2. сохранение контакта колеса с опорной поверхностью;
  3. обеспечение плавности хода автомобиля.

Конструкция автомобильного амортизатора

Амортизаторы бывают двух типов: однотрубный или двухтрубный. От типа амортизатора зависит и его конструкция. Несмотря на это, основные элементы у обоих типов остаются общими. Амортизатор состоит из цилиндра, заполненного специальной жидкостью (маслом), по которому перемещается поршень. Сам поршень соединен со штоком круглого сечения, который, в свою очередь, своей верхней частью крепится к кузову автомобиля. В поршне сделаны отверстия небольшого диаметра (клапаны), через которые проходит жидкость. Для того, чтобы повысить сопротивление потоку жидкости, их делают подпружиненными. Более детальное описание конструкции амортизаторов приводится далее.

Конструкция гидравлического амортизатора

Амортизатор соединяется с рычагом подвески или балкой моста. Крепление амортизатора производится через упругое соединение — сайлентблок.

Принцип действия амортизатора

Масляные амортизаторы работают по принципу преобразования энергии жидкостного трения в тепловую. Перемещающийся шток с поршнем заставляет масло перетекать через небольшие клапаны, тем самым создавая сопротивление его движению. Максимальный ход штока с поршнем ограничивает отбойник амортизатора. Передние амортизаторы воспринимают достаточно большую нагрузку, поэтому их делают более усиленными по сравнению с задними.

Классификация амортизаторов

Двухтрубный амортизатор

Двухтрубный амортизатор состоит из соосных цилиндров, один из которых помещен внутри другого. Шток с поршнем перемещается во внутренней полости — рабочей камере. Она сообщается с внешней, частично заполненной воздухом либо азотом через донный клапан. Камера, заполненная газом, предназначена для компенсации объема жидкости при погружении штока.

Схема двухтрубного амортизатора

  • простая конструкция и невысокая стоимость изготовления;
  • небольшая длина;
  • малое внутреннее давление (при утечках небольшого количества масла через сальник рабочие характеристики сохраняются);
  • мягкое демпфирование ударов подвески;
  • лучшая устойчивость к механическим повреждениям.
  • вспенивание масла после длительной работы и, как следствие, снижение эффективности демпфирования;
  • недостаточно эффективное охлаждение;
  • установка, хранение и транспортировка амортизатора производится только в одном положении — штоком вверх.

Двухтрубную конструкцию могут иметь как передние, так и задние амортизаторы. Но все же в большинстве случаев на современных автомобилях двухтрубные амортизаторы устанавливаются на заднюю ось.

Однотрубный амортизатор

Однотрубные амортизаторы являются газонаполненными. В их конструкции предусмотрен только один цилиндр, в нижней части которого расположена камера, заполненная газом под давлением 2…3 МПа. Данная камера отделена от жидкости специальным плавающим поршнем и предназначена для компенсации объема жидкости при сжатии амортизатора. Благодаря тому, что газ постоянно поджимает жидкость в рабочей камере, при высокочастотном режиме работы амортизатора предотвращается эффект вспенивания масла (эмульсирование), а также появляется возможность его установки в любом положении.

  • лучшее демпфирование и стабильность;
  • улучшенное охлаждение по сравнению с двухтрубной системой;
  • возможность установки амортизатора в любом положении.
  • большая длина амортизатора;
  • низкая устойчивость к механическим воздействиям;
  • высокая стоимость изготовления по причине применения более качественных уплотнений и материалов для корпуса.

Однотрубные газонаполненные амортизаторы способны выдерживать серьезные нагрузки без потери рабочих свойств. В основном, они применяются в качестве передних амортизаторов.

Регулируемые амортизаторы с клапаном переменного сечения

Адаптивные (или регулируемые) амортизаторы предполагают возможность изменения демпфирующих свойств (коэффициента демпфирования). Амортизаторы оснащаются электромагнитным клапаном, сечение которого изменяется под воздействием электрического сигнала. Уменьшение сечения затрудняет прохождение жидкости через клапан, увеличивая жесткость амортизатора. Увеличение же сечения клапана, наоборот, делает его более мягким.

Адаптивные амортизаторы с магнитореологической жидкостью

Регулируемые амортизаторы данного типа заполнены жидкостью с включением металлических частиц. Такое масло меняет структуру под воздействием магнитного поля, которое создается при помощи катушек, встроенных в поршень амортизатора. Благодаря магнитореологической жидкости магнитные амортизаторы изменяют характеристики жесткости за доли секунды. Преимущество адаптивных амортизаторов заключается в возможности изменения характеристики подвески в соответствии с текущими условиями движения: более жесткая подвеска улучшит управляемость и устойчивость автомобиля, а более мягкая повысит комфорт передвижения. Основной недостаток адаптивного амортизатора: высокая стоимость его изготовления.

Спортивные амортизаторы

Спортивные амортизаторы предназначены для работы в условиях экстремальных нагрузок. Их отличает повышенная жесткость и стабильность, обеспечивающие лучшую управляемость автомобиля.

Основные неисправности и срок службы амортизаторов

Наиболее частотная неисправность амортизатора – нарушение герметичности уплотнительного сальника штока. Это происходит в случае повреждения пыльника амортизатора, и, как следствие, попадания грязи на поверхность штока. Повреждение сальника штока ведет к утечке газа и амортизаторной жидкости, из-за чего сам амортизатор утрачивает свои демпфирующие свойства.

При нормальных условиях эксплуатации срок службы амортизаторов может составить 3-5 и более лет. Передние амортизаторы претерпевают большую нагрузку, тем не менее, на новом автомобиле их ресурс составляет примерно 100-125 тысяч километров пробега. Задние же амортизаторы обычно превосходят эти показатели.

Амортизаторы. Устройство и принцип действия

Амортизаторы передней и задней подвесок колес автомобиля предназначены для гашения колебаний кузова на упругих элементах при движении по неровностям дороги.

Принцип действия гидравлического амортизатора основан на перетекании жидкости из одной полости амортизатора в другую через малые проходные сечения, в результате чего амортизатор развивает сопротивление, поглощающее энергию колебательного движения. Сопротивление, развиваемое в переднем амортизаторе, при растяжении примерно в 3 раза больше сопротивления при его сжатии. Эти амортизаторы являются амортизаторами двухстороннего действия. Они гасят колебания как при ходе сжатия подвески (когда колесо приближается к кузову), так и при ходе отдачи (колесо отдаляется от кузова).

Гидравлические амортизаторы обеих подвесок телескопического типа, по принципу работы совершенно одинаковые и отличаются габаритными размерами, рабочей характеристикой клапанов отдачи (усилие растяжения в переднем амортизаторе в 2 раза больше), способом крепления (верхний конец заднего амортизатора имеет ушко) и отсутствием кожуха па переднем амортизаторе.

Читать еще:  Принцип работы кшм кратко

На рисунке показаны совмещенные разрезы переднего и заднего амортизаторов. В дальнейшем, при описании конструкции амортизаторов и их работы, иногда после порядкового номера детали в тексте будет помещен в скобках другой номер. Это будет повторяться лишь в тех случаях, когда одноименные детали переднего и заднего амортизаторов различные.

Устройство амортизатора

Амортизатор состоит из стального резервуара 4 (29), соединенного сваркой с нижней монтажной проушиной 1; внутри резервуара свободно помещен рабочий цилиндр 13 (30), изготовленный из стальной трубы. Снизу в рабочий цилиндр запрессован (до упора в торец) клапан сжатия, который состоит из корпуса 2, вставленного в него клапана 39 с пружиной 40 и седла 3 клапана. Седло клапана ввертывается в корпус; его положение подбирается заранее по заданной гидравлической характеристике клапана сжатия, а затем контрится ограничительной гайкой 38, которая, в свою очередь, имеет буртик, служащий упором пружинной звездочки 6, поджимающей к плоскости клапана сжатия тарелку 5 впускного клапана.

Рис. Амортизаторы подвесок колес автомобиля:
а — передний; б — задний; 1 — нижняя монтажная проушина; 2 — корпус клапана сжатии; 3 — седло клапана сжатия; 4 — резервуар переднего амортизатора; 5 — тарелка впускного клапана; 6 — звездочка впускного клапана; 7 — регулировочная шайба; 6 — пружина клапана отдачи переднего амортизатора; 9 — диск клапана отдачи; 10 — дроссельный диск клапана отдачи переднего амортизатора; 11 — звездочка перепускного клапана; 12 — ограничительная тарелка; 13 — рабочий цилиндр переднего амортизатора; 14 — шток переднего амортизатора; 15 — направляющая штока; 16 — пружина сальника; 17 — сальник резервуара; 18 — обойма сальника; 19 — обойма сальников; 20 — замочное кольцо переднего амортизатора; 21 — упорное кольцо переднего амортизатора; 22 — верхняя монтажная проушина; 23 — шток заднего амортизатора; 24 — гайка резервуара; 25 — нажимная шайба; 26 — войлочный сальник штока; 27 — резиновый сальник штока; 28 — кожух заднего амортизатора; 29 — резервуар заднего амортизатора; 30 — рабочий цилиндр заднего амортизатора; 31 — тарелка перепускного клапана; 32 — поршень; 33 — дроссельный диск клапана отдачи заднего амортизатора; 34 — тарелка клапана отдачи; 35 — регулировочная шайба клапана отдачи; 36 — пружина клапана отдачи заднего амортизатора; 37 — гайка клапана отдачи; 38 — ограничительная гайка впускного клапана; 39 — клапан сжатия; 40 — пружина клапана сжатия

Шток 14 (23) изготовлен из углеродистой стали. Рабочая поверхность штока 14 переднего амортизатора покрыта слоем хрома и отполирована. Шток 23 заднего амортизатора отполирован без покрытия слоем хрома. На верхнем конце штока 14 переднего амортизатора прорезана выточка под замковое кольцо 20, которое фиксирует упорное кольцо 21.

Верхний конец штока 23 заднего амортизатора приварен контактной сваркой к верхней монтажной проушине 22, а к фланцу проушины приварен кожух 28, защищающий шток и сальники от прямого попадания грязи и влаги. На нижнем конце штока гайкой 37 укреплен поршень 32 с деталями клапана отдачи и перепускного клапана.

Клапан отдачи включает дроссельный диск 10 (33), перекрывающий восемь отверстии поршня, расположенных по окружности ближе к его оси, диск 9, набор тонких регулировочных шайб 35, тарелку 31, тарированную пружину 8 (36), гайку 37, завернутую До упора, и комплект регулировочных шайб 7.

Перепускной клапан состоит из ограничительной тарелки 12 с шайбой, пружинной звездочки 11 и тарелки 31, закрывающей перепускные отверстия поршня, расположенные по окружности дальше от его оси.

Сверху рабочий цилиндр закрыт направляющей 15 штока, изготовленной из цинкового сплава. Внутри направляющей помещена металлокерамическая втулка, по которой перемещается шток. Войлочный сальник 26, расположенный под гайкой резервуара, защищает внутреннюю полость от проникновения грязи, а внутренний резиновый сальник 27, установленный в обойме 19 и поджимаемый пружиной 16 через обойму 18, препятствует выходу жидкости из амортизатора. Для уплотнения резервуара между обоймой и направляющей штока размещен уплотняющий сальник 17, который сжимается через фибровую шайбу 25 при завертывании гайки 24.

Принцип действия амортизатора

При плавном сжатии амортизатора жидкость, находящаяся под поршнем, испытывает сжатие, однако ввиду практической несжимаемости она вынуждена перетекать из полости В рабочего цилиндра в полость меньшего давления. Жидкость движется в двух направлениях. Большая часть жидкости перетекает через восемь отверстий К, приподнимая при этом тарелку перепускного клапана, прижатую слабой пружинной звездочкой, в полость Л (движение жидкости показано на рисунке а тонкими стрелками). Жидкость, вытесняемая из полости В, не полностью перетекает в полость А; часть ее, равная объему вводимого в амортизатор штока, выходит в полость С через два паза Т в корпусе клапана сжатия.

При резком нажатии на шток давление жидкости под поршнем в полости В возрастает, вследствие чего клапан сжатия открывается и сжимает пружину (движение жидкости показано жирными стрелками). Жидкость перетекает в верхнюю полость А рабочего цилиндра так же, как при плавном ходе сжатия. Перепускной клапан при ходе сжатия практически не влияет на гидравлическое сопротивление, развиваемое амортизатором. Требуемое сопротивление, необходимое при резком сжатии, обеспечивается клапаном сжатия.

При обратном ходе, т.е. при перемещении поршня вверх (ход отдачи), жидкость из верхней полости А рабочего цилиндра через отверстия П в поршне и четыре выреза Н дроссельного диска (дроссельный диск заднего амортизатора имеет шесть вырезов) перетекает в нижнюю полость В рабочего цилиндра. Объем жидкости, вытесняемый из полости А, меньше освободившегося объема полости В под поршнем на величину объема штока, извлеченного из амортизатора. Освободившийся объем заполняется жидкостью, поступающей из полости С через отверстия Р клапана сжатия, приподнимает при этом тарелку впускного клапана, прижатую в плоскости клапана сжатия лапками слабой пружинной звездочки (движение жидкости показано на рисунке б тонкими стрелками).

При ходе отдачи, когда кузов автомобиля подбрасывается на упругих элементах подвесок колес вверх, давление над поршнем в полости А рабочего цилиндра возрастает. Жидкость через отверстия П в поршне давит на диски клапана отдачи и отгибает их. Одновременно сжимается пружина клапана, подпирающая диски, а проходное сечение для перетекания жидкости увеличивается. Требуемое гидравлическое сопротивление для гашения колебаний при ходе отдачи обеспечивается тарированной пружиной клапана отдачи. Полость В при резкой отдаче заполняется так же, как и при плавном движении поршня. Впускной клапан не оказывает существенного влияния на гидравлическое сопротивление при работе амортизатора; он предназначен для свободного впуска жидкости в полость В.

Рис. Схема работы амортизатора:
а — сжатие; б — растяжение

Принцип работы амортизатора

Амортизаторы.

Упругие элементы подвески.

Основой подвески любого современного автомобиля является упругий элемент – пружина, рессора или торсион. Хотя эти конструкции прекрасно справляются со своей основной задачей – смягчением толчков, вызванных неровностями дороги и неравномерностью движения, всем им присущ один существенный недостаток. Полученная в результате механического воздействия кинетическая энергия запасается в упругом элементе и вызывает ответные колебания. Естественно, возникающие колебания подрессоренной части автомобиля не способствуют комфорту и безопасности как водителя, так и пассажиров.

Для чего нужны амортизаторы.

Для гашения колебаний, создаваемых упругими элементами подвески автомобиля используются амортизаторы. Наибольшее распространение получили так называемые гидравлические амортизаторы, так как в качестве рабочего элемента в них используется жидкость. Часто такие амортизаторы также называют масляные, потому что используемая в них жидкость представляет собой специальное масло. (К гидравлическим также относятся и газонаполненные амортизаторы).

Конструкция амортизаторов.

Конструктивно любой гидравлический амортизатор состоит из заполненного рабочей жидкостью (маслом) цилиндра и помещенного внутрь него поршня. Внутри поршня имеются узкие отверстия, предназначенные для пропускания масла. Поршень перемещается под воздействием штока, закрепленного на кузове автомобиля, а цилиндр амортизатора крепится на подвижной части подвески автомобиля (рычаге или опоре подшипника колеса).

Принципы работы амортизаторов.

Принцип работы гидравлических амортизаторов заключается в демпфировании возникающих колебаний путем прогона масла через клапаны поршня. Механическая энергия колебаний упругих элементов подвески при этом переходит в нагрев рабочей жидкости амортизатора. Благодаря значительному гидравлическому сопротивлению масла, затухание колебательного процесса происходит практически не начавшись.

Проблемы, возникающие при работе амортизаторов.

Однако, в процессе сжатия гидравлического амортизатора в его цилиндр входит часть штока поршня и рабочий объем цилиндра уменьшается. Так как используемое в амортизаторах масло (как и любая жидкость) практически не сжимается, то приходится использовать специальные устройства для компенсации занимаемого штоком поршня объема. В зависимости от конструкции таких устройств можно выделить два основных типа амортизаторов: однотрубные и двухтрубные.

Двухтрубные амортизаторы.

Для создания дополнительного объема в двухтрубных амортизаторах используется дополнительный, соосный основному цилиндр, немного большего диаметра. При сжатии такого амортизатора часть рабочей жидкости проходит через отверстия поршня в пространство над поршнем. Другая часть масла, соответствующая по объему входящему в цилиндр амортизатора штоку, вытесняется из основного цилиндра в дополнительный через расположенный в дне основного цилиндра клапан. При растяжении (отбое) амортизатора процесс происходит в обратном направлении. Отличие состоит лишь в том, что при сжатии амортизатора основное усилие приходится на клапан, а при растяжении – на поршень.

Однотрубные газонаполненные амортизаторы.

В однотрубных амортизаторах в качестве компенсационной полости используется часть цилиндра, которая заполняется газом под высоким давлением. В качестве наполнителя обычно используется нейтральный азот, закачанный под давлением 15-20 кгс/см2. Несмотря на распространенное название такого амортизатора «газовый», в качестве рабочего тела здесь также используется масло, а не газ. Сжатие газа лишь позволяет скомпенсировать объем, вытесняемый штоком поршня. Используемый в однотрубных амортизаторах газ закачан в отдельную камеру и отделен от рабочей области цилиндра разделительным поршнем. При этом, в отличие от двухтрубных амортизаторов, вся нагрузка по демпфированию колебаний, как при сжатии, так и при растяжении (отбое) амортизатора приходится на клапаны основного поршня.

Каждая из основных конструкций амортизаторов имеет свои достоинства и недостатки.

Недостатки и преимущества двухтрубных амортизаторов.

Основной недостаток двухтрубных амортизаторов, это вспенивание (кавитация) масла, возникающее при интенсивной работе амортизатора. Кроме того, рабочая площадь (сечение основного цилиндра) у двухтрубных амортизаторов меньше, чем у однотрубных, что существенно уменьшает эффективность его работы при небольших смещениях штока. И, наконец, двухтрубный амортизатор весьма чувствителен к своему расположению – при углах установки, превышающих 45 градусов, находящийся в компенсационной камере воздух может попасть в основной цилиндр и нарушить работу амортизатора. Основным преимуществом двухтрубных амортизаторов является их сравнительная невысокая стоимость, благодаря чему, ими укомплектованы большинство серийных автомобилей.

Читать еще:  Принцип работы радиатора

Особенности однотрубных амортизаторов.

Конечно, имеются свои недостатки и однотрубных амортизаторов. Основная проблема заключается в том, что изготовление таких амортизаторов требует очень большой точности, что, соответственно, отражается на их стоимости. Например, чтобы обеспечить необходимое уплотнение штока, шероховатость его поверхности должна быть менее 0,1 микрона. Вторым недостатком газонаполненных амортизаторов является их большая (по сравнению с двухтрубными) длина. Кроме того, при толстом штоке и больших смещениях поршня, наполненная газом камера становится как бы дополнительной пружиной, что также не лучшим образом отражается на управляемости автомобиля.

Преимущества однотрубных амортизаторов.

Несмотря на присущие однотрубным амортизаторам недостатки и их сравнительно высокую стоимость, газонаполненные амортизаторы превосходят двухтрубные по основным техническим параметрам. Особенно важно то, что однотрубные амортизаторы способны работать при весьма неблагоприятных условиях и выдерживать значительные нагрузки. Благодаря этой особенности, однотрубные амортизаторы получили широкое распространение в спортивных автомобилях. Кроме того, гидравлическая характеристика однотрубных пневматических амортизаторов имеет более «жесткий» характер, что обеспечивает более уверенный контакт колес автомобиля с дорожным покрытием, улучшает устойчивость, плавность хода, управляемость, топливную экономичность и тормозные свойства.

Газонаполненные амортизаторы с выносными резервуарами.

Дальнейшее развитие газонаполненные амортизаторы получили в конструкции спортивных амортизаторов с выносными резервуарами. Выносная камера этих амортизаторов позволила значительно увеличить рабочий объем газа и масла, что существенно улучшило их технические характеристики (в частности, облегчило процесс охлаждения амортизатора). Кроме того, система клапанов, соединяющая рабочий цилиндр и дополнительную камеру, позволяет произвести точную независимую регулировку усилий сжатия и отбоя. Практически, конструкция газонаполненных амортизаторов с выносной камерой объединила достоинства однотрубных и двухтрубных амортизаторов.

К сожалению, при всех своих преимуществах, стоимость таких амортизаторов оказалась довольно-таки высокой, что ограничило их применение в серийном производстве автомобилей.

Двухтрубные гидропневматические амортизаторы.

Разумным компромиссом между однотрубным газонаполненным амортизатором и классическим гидравлическим амортизатором стал двухтрубный гидропневматический амортизатор. Благодаря закачанному под небольшим давлением (4 атм) инертному газу, значительно улучшается эффективность его работы. Кроме того, разделяя рабочую жидкость и резервуар, инертный газ (азот) исключает явление кавитации (вскипания) масла. Гидравлические характеристики двухтрубных гидропневматических амортизаторов с газовым подпором низкого давления очень близки к характеристикам однотрубных амортизаторов с газовым подпором высокого давления. При этом, изготовление таких устройств не требует использования высокоточных деталей, что позволяет гидропневматическим амортизаторам оставаться в ценовой категории классических двухтрубных амортизаторов.

Амортизаторы. Устройство и принцип действия

Амортизаторы передней и задней подвесок колес автомобиля предназначены для гашения колебаний кузова на упругих элементах при движении по неровностям дороги.

Принцип действия гидравлического амортизатора основан на перетекании жидкости из одной полости амортизатора в другую через малые проходные сечения, в результате чего амортизатор развивает сопротивление, поглощающее энергию колебательного движения. Сопротивление, развиваемое в переднем амортизаторе, при растяжении примерно в 3 раза больше сопротивления при его сжатии. Эти амортизаторы являются амортизаторами двухстороннего действия. Они гасят колебания как при ходе сжатия подвески (когда колесо приближается к кузову), так и при ходе отдачи (колесо отдаляется от кузова).

Гидравлические амортизаторы обеих подвесок телескопического типа, по принципу работы совершенно одинаковые и отличаются габаритными размерами, рабочей характеристикой клапанов отдачи (усилие растяжения в переднем амортизаторе в 2 раза больше), способом крепления (верхний конец заднего амортизатора имеет ушко) и отсутствием кожуха па переднем амортизаторе.

На рисунке показаны совмещенные разрезы переднего и заднего амортизаторов. В дальнейшем, при описании конструкции амортизаторов и их работы, иногда после порядкового номера детали в тексте будет помещен в скобках другой номер. Это будет повторяться лишь в тех случаях, когда одноименные детали переднего и заднего амортизаторов различные.

Устройство амортизатора

Амортизатор состоит из стального резервуара 4 (29), соединенного сваркой с нижней монтажной проушиной 1; внутри резервуара свободно помещен рабочий цилиндр 13 (30), изготовленный из стальной трубы. Снизу в рабочий цилиндр запрессован (до упора в торец) клапан сжатия, который состоит из корпуса 2, вставленного в него клапана 39 с пружиной 40 и седла 3 клапана. Седло клапана ввертывается в корпус; его положение подбирается заранее по заданной гидравлической характеристике клапана сжатия, а затем контрится ограничительной гайкой 38, которая, в свою очередь, имеет буртик, служащий упором пружинной звездочки 6, поджимающей к плоскости клапана сжатия тарелку 5 впускного клапана.

Рис. Амортизаторы подвесок колес автомобиля:
а — передний; б — задний; 1 — нижняя монтажная проушина; 2 — корпус клапана сжатии; 3 — седло клапана сжатия; 4 — резервуар переднего амортизатора; 5 — тарелка впускного клапана; 6 — звездочка впускного клапана; 7 — регулировочная шайба; 6 — пружина клапана отдачи переднего амортизатора; 9 — диск клапана отдачи; 10 — дроссельный диск клапана отдачи переднего амортизатора; 11 — звездочка перепускного клапана; 12 — ограничительная тарелка; 13 — рабочий цилиндр переднего амортизатора; 14 — шток переднего амортизатора; 15 — направляющая штока; 16 — пружина сальника; 17 — сальник резервуара; 18 — обойма сальника; 19 — обойма сальников; 20 — замочное кольцо переднего амортизатора; 21 — упорное кольцо переднего амортизатора; 22 — верхняя монтажная проушина; 23 — шток заднего амортизатора; 24 — гайка резервуара; 25 — нажимная шайба; 26 — войлочный сальник штока; 27 — резиновый сальник штока; 28 — кожух заднего амортизатора; 29 — резервуар заднего амортизатора; 30 — рабочий цилиндр заднего амортизатора; 31 — тарелка перепускного клапана; 32 — поршень; 33 — дроссельный диск клапана отдачи заднего амортизатора; 34 — тарелка клапана отдачи; 35 — регулировочная шайба клапана отдачи; 36 — пружина клапана отдачи заднего амортизатора; 37 — гайка клапана отдачи; 38 — ограничительная гайка впускного клапана; 39 — клапан сжатия; 40 — пружина клапана сжатия

Шток 14 (23) изготовлен из углеродистой стали. Рабочая поверхность штока 14 переднего амортизатора покрыта слоем хрома и отполирована. Шток 23 заднего амортизатора отполирован без покрытия слоем хрома. На верхнем конце штока 14 переднего амортизатора прорезана выточка под замковое кольцо 20, которое фиксирует упорное кольцо 21.

Верхний конец штока 23 заднего амортизатора приварен контактной сваркой к верхней монтажной проушине 22, а к фланцу проушины приварен кожух 28, защищающий шток и сальники от прямого попадания грязи и влаги. На нижнем конце штока гайкой 37 укреплен поршень 32 с деталями клапана отдачи и перепускного клапана.

Клапан отдачи включает дроссельный диск 10 (33), перекрывающий восемь отверстии поршня, расположенных по окружности ближе к его оси, диск 9, набор тонких регулировочных шайб 35, тарелку 31, тарированную пружину 8 (36), гайку 37, завернутую До упора, и комплект регулировочных шайб 7.

Перепускной клапан состоит из ограничительной тарелки 12 с шайбой, пружинной звездочки 11 и тарелки 31, закрывающей перепускные отверстия поршня, расположенные по окружности дальше от его оси.

Сверху рабочий цилиндр закрыт направляющей 15 штока, изготовленной из цинкового сплава. Внутри направляющей помещена металлокерамическая втулка, по которой перемещается шток. Войлочный сальник 26, расположенный под гайкой резервуара, защищает внутреннюю полость от проникновения грязи, а внутренний резиновый сальник 27, установленный в обойме 19 и поджимаемый пружиной 16 через обойму 18, препятствует выходу жидкости из амортизатора. Для уплотнения резервуара между обоймой и направляющей штока размещен уплотняющий сальник 17, который сжимается через фибровую шайбу 25 при завертывании гайки 24.

Принцип действия амортизатора

При плавном сжатии амортизатора жидкость, находящаяся под поршнем, испытывает сжатие, однако ввиду практической несжимаемости она вынуждена перетекать из полости В рабочего цилиндра в полость меньшего давления. Жидкость движется в двух направлениях. Большая часть жидкости перетекает через восемь отверстий К, приподнимая при этом тарелку перепускного клапана, прижатую слабой пружинной звездочкой, в полость Л (движение жидкости показано на рисунке а тонкими стрелками). Жидкость, вытесняемая из полости В, не полностью перетекает в полость А; часть ее, равная объему вводимого в амортизатор штока, выходит в полость С через два паза Т в корпусе клапана сжатия.

При резком нажатии на шток давление жидкости под поршнем в полости В возрастает, вследствие чего клапан сжатия открывается и сжимает пружину (движение жидкости показано жирными стрелками). Жидкость перетекает в верхнюю полость А рабочего цилиндра так же, как при плавном ходе сжатия. Перепускной клапан при ходе сжатия практически не влияет на гидравлическое сопротивление, развиваемое амортизатором. Требуемое сопротивление, необходимое при резком сжатии, обеспечивается клапаном сжатия.

При обратном ходе, т.е. при перемещении поршня вверх (ход отдачи), жидкость из верхней полости А рабочего цилиндра через отверстия П в поршне и четыре выреза Н дроссельного диска (дроссельный диск заднего амортизатора имеет шесть вырезов) перетекает в нижнюю полость В рабочего цилиндра. Объем жидкости, вытесняемый из полости А, меньше освободившегося объема полости В под поршнем на величину объема штока, извлеченного из амортизатора. Освободившийся объем заполняется жидкостью, поступающей из полости С через отверстия Р клапана сжатия, приподнимает при этом тарелку впускного клапана, прижатую в плоскости клапана сжатия лапками слабой пружинной звездочки (движение жидкости показано на рисунке б тонкими стрелками).

При ходе отдачи, когда кузов автомобиля подбрасывается на упругих элементах подвесок колес вверх, давление над поршнем в полости А рабочего цилиндра возрастает. Жидкость через отверстия П в поршне давит на диски клапана отдачи и отгибает их. Одновременно сжимается пружина клапана, подпирающая диски, а проходное сечение для перетекания жидкости увеличивается. Требуемое гидравлическое сопротивление для гашения колебаний при ходе отдачи обеспечивается тарированной пружиной клапана отдачи. Полость В при резкой отдаче заполняется так же, как и при плавном движении поршня. Впускной клапан не оказывает существенного влияния на гидравлическое сопротивление при работе амортизатора; он предназначен для свободного впуска жидкости в полость В.

Рис. Схема работы амортизатора:
а — сжатие; б — растяжение

Ссылка на основную публикацию
Adblock
detector