Широкополосный лямбда зонд
Autoservice-ryazan.ru

Автомобильный портал

Широкополосный лямбда зонд

Широкополосный датчик кислорода: устройство, принцип работы, неисправности. Широкополосный лямбда-зонд

Ежегодно в мире ужесточаются экологические нормы. Сейчас каждый автомобиль укомплектован системой фильтрации отработавших газов. И если на дизельных моторах эту функцию выполняет сажевый фильтр и система SCR, то на бензиновых все несколько иначе. Здесь используется каталитический нейтрализатор. Именно он преобразует вредные металлы в экологически чистые оксиды. Однако его работа и эффективность зависима от электроники. Так, в конструкции автомобиля можно встретить широкополосный датчик кислорода. Что это за элемент, как он работает, как устроен и можно ли его проверить своими руками? Ответы на эти вопросы узнаете в нашей сегодняшней статье.

Характеристика

Что это за элемент? Широкополосный лямбда-зонд – это устройство, которое отвечает за измерение количества кислорода в выхлопных газах автомобиля. Благодаря работе данного элемента обеспечивается наиболее правильное смесеобразование и, как следствие, оптимальная и стабильная работа двигателя на всех его режимах. Процесс управления концентрацией кислорода в газах называют лямбда-регулированием.

Сам название «лямбда» происходит от греческого символа λ. В автомобилестроении данным символом обозначается коэффициент остатка воздуха в горючей смеси.

Где находится?

Устанавливается широкополосный лямбда-зонд в выхлопной системе. В зависимости от типа автомобиля, в конструкции может использоваться один или несколько таких датчиков. Так, первый устанавливается до катализатора, второй – после него. Внешне его можно увидеть не всегда. Например, на «Калине» первых поколений данный элемент расположен в районе днища. А начиная со второго поколения кислородный датчик (лямбда-зонд) монтируется прямо в выпускной коллектор, доступ к которому осуществляется из-под капота. Но в любом случае данный элемент будет выглядеть как некая форсунка, что торчит из трубы со жгутом проводов.

Отметим, что на старых автомобилях использовался не широкополосный датчик кислорода, а двухточечный. Он имеет простую конструкцию. Был заменен ввиду необходимости более точных показаний. Ведь чем правильнее смесь, тем более оптимальной будет работа двигателя в разных режимах и нагрузках. Кстати, некоторые устанавливают широкополосный датчик кислорода с показометром. Обычно это цифровой «будильник», который показывает соотношение бензина и воздуха в смеси в режиме реального времени. Зачастую используется для диагностики неисправностей авто. На заводе такой элемент не устанавливается.

Устройство

Конструкция данного механизма предполагает наличие следующих элементов:

  • Металлический корпус с резьбой.
  • Электрический нагреватель.
  • Наконечник.
  • Защитный экран.
  • Токопроводящий контакт.
  • Уплотнительная манжета для провода.
  • Изолятор.

В основе механизма лежат два чувствительных электрода. Внешний имеет платиновое напыление, благодаря которому электрод сильно чувствителен к кислороду. Внутренний же изготовлен из циркония. Устанавливается датчик таким образом, чтобы сквозь него проходили отработанные газы. Внешний электрод улавливает О2, после чего измеряется потенциал между двумя наконечниками. Чем он выше, тем больше кислорода в системе.

Широкополосный датчик кислорода являет собой усовершенствованную конструкцию двухконтактного механизма. Отметим, что потенциал разницы измеряется под воздействием определенной силы тока.

Как это работает?

Алгоритм действия данного элемента основывается на поддержке определенного напряжения. Оно составляет 0,45 В. Это стабильный показатель между двумя электродами датчика.

При снижении концентрации О2, напряжение между керамическим элементом возрастает. это свидетельствует о наличии обогащенной смеси. Данный сигнал моментально поступает в электронный блок управления. Последний на основаниях этих сигналов создает ток определенной силы на исполнительных устройствах (в том числе на форсунке). Та, в свою очередь, впрыскивает больше (или меньше, в зависимости от показаний) бензина в камеру. Если смесь бедная, датчик сигнализирует об этом ЭБУ таким же образом.

Важная особенность

Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.

Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.

Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.

Значение лямбды и связь с ДВС

Исходя из всего вышесказанного можно сказать, что работа стабильная работа двигателя внутреннего сгорания невозможна без широкополосного датчика. Именно этот элемент формирует сигнальные значения для ЭБУ, который впоследствии корректирует горючую смесь. Электронный блок является связующим звеном, который не только принимает импульсы, но и подает опорное напряжение 0,45 В на датчик. В зависимости от нагрузки двигателя внутреннего сгорания, режима его работы и рабочей температуры электроника подбирает наиболее оптимальное соотношение воздуха и топлива в смеси.

Считается, что идеальное соотношение – это 14,7 частей кислорода на одну часть бензина. При таком условии значение лямбды будет равно единице. Но не стоит забывать о таком значении, как коэффициент избытка воздуха. Если лямбда показывает выше единицы, значит, смесь будет обедненной. В таком случае в цилиндр поступит больше кислорода. Ежели лямбда ниже одного, значит, ЭБУ будет формировать обогащенную смесь. Так, в цилиндры поступит больше топлива, чем обычно.

Ресурс

Это довольно хрупкий элемент в автомобиле. Замена лямбда-зонда может понадобиться уже через 50 тысяч километров. Но как правило, на таком пробеге изнашиваются датчики отечественных авто. Если говорить об иномарках, замена лямбда-зонда может наступить через 100-120 тысяч километров. Точных цифр никто не регламентирует, поскольку ресурс зависит от многих факторов (вплоть до содержания свинца в бензине).

Признаки

Как определить, что кислородный датчик (лямбда-зонд) требует замены? Узнать это очень просто. Поскольку датчик будет неисправен, на электронный блок заведомо поступят ошибочные сигналы и данные. В результате мотор будет работать нестабильно. Причиной тому является неправильно сформированная топливовоздушная смесь. Неисправность кислородного датчика широкополосного типа сопровождается:

  • Увеличением расхода топлива.
  • Нестабильными оборотами на холостом ходу.
  • Неконтролируемым нагреванием катализатора. после остановки мотора, он может потрескивать.
  • Изменением концентрации СО в газах. Выхлоп будет более едким и неприятным на запах.
  • Появлением лампы «Проверьте двигатель» на панели приборов.
  • Снижением разгонной динамики.
  • Провалами (рывками) при попытке набрать скорость.

Если появился хотя бы один из вышеперечисленных симптомов, это повод произвести детальную проверку широкополосного датчика кислорода.

Причины неисправности

Почему данный механизм может выходить из строя? Первая причина – это естественный износ. Если пробег автомобиля составил более 50 тысяч километров, ресурс механизма может подойти к концу. Но также датчик ломается по другим причинам:

  • При обрыве проводов, что идут на датчик. В таком случае сигнал попросту не поступит на ЭБУ.
  • При механическом повреждении. Многие датчики устанавливаются в районе днища. Если автомобиль проехал через глубокое препятствие, возможно повреждение измерительного элемента. При малейшей деформации разрушается гальванический элемент широкополосного датчика кислорода.
  • При перегреве датчика. Это может произойти из-за неполадок в топливной системе автомобиля. Обычно это некорректный угол зажигания либо неправильный тюнинг двигателя (например, не та прошивка ЭБУ при чип-тюнинге).
  • При загрязнении чувствительного элемента. Если закоксовывается верхний слой с платиновым покрытием, ионы не будут улавливаться широкополосным датчиком. Что это может быть? Обычно загрязнения происходят из-за попадания масла в камеру сгорания. данная копоть затем обволакивает стенки выпускного коллектора, а также наконечника датчика. Еще загрязнения могут происходить из-за использования некачественного бензина, который содержит много свинца.

  • При разгерметизации корпуса. Такое бывает редко, но данную неисправность не следует исключать.
  • При попадании антифриза в цилиндры двигателя. это происходит из-за пробоя прокладки головки блока. В результате газы приобретают характерный белый цвет. Помимо этого, меняется и концентрация кислорода в выхлопе. Простыми словами, датчик начинает «сходить с ума». ЭБУ готовит неправильную смесь.

Разбираем контакты

В отличие от двухконтактного датчика, широкополосный имеет несколько иное устройство.

К нему подводится целая колодка с проводами. За что отвечает каждый из них? Ниже мы расскажем о распиновке широкополосного датчика кислорода:

  • Пин-1. Отвечает за ток ионного насоса. Напряжение на этом контакте должно составлять не менее 10 микроампер.
  • Пин-2. Отвечает за массу. Допустимое отклонение – не больше 100 mV.
  • Пин-3. Отвечает за работу гальванического элемента (сигнал Нернста). В отключенном разъеме уровень напряжения должен составлять порядка 0,45 В. При подключенном разъеме данная цифра находится в пределах 1 В.
  • Пин-4 и 5. Эти контакты отвечают за напряжение на подогревателе. Управляется подогреватель широкополосного датчика путем широтно-импульсной модуляции. В случае отказа подогревателя, при компьютерной диагностике будут следующие коды ошибок: РОО36 и РОО64.

Подводим итоги

Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.

Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.

Mitsubishi Galant 2.0/AT Blaze Red › Logbook › Широкополосный лямбда-зонд (ШДК) AEM UEGO

Однажды умер у меня датчик кислорода (лямбда-зонд). Решил я поставить новый, оригинальный, но к нему ещё и добавить широкополосный лямбда-зонд с индикатором качества сгорания топлива на приборной панели. Сразу предупреждаю, текст не для профи и будет многа букав.

Широкополосный лямбда-зонд (ШДК) лично я бы назвал самым полезным дополнительным прибором в машине, который показывает качество приготовления топливно-воздушной смеси и качество её правильного сгорания. Соответственно, это влияет на расход, ускорение и другие моменты в вождении, которые водитель ощущает пятой точкой. А на приборе он это ещё и увидит воочию. Особенно ШДК пригодится тем, кто ездит на газу (пропан-бутане), т.к. при переключении с бензина на газ можно легко проконтролировать качество настройки газовых мозгов, которые воруют информацию с бензинового мозга и управляют газовыми форсунками.

Сначала немного ликбеза. Чтобы двигатель работал идеально, он должен получать в свои цилиндры топливно-воздушную смесь (ТВС), которая должна состоять из 1 части топлива и 14,7 частей воздуха. Это соотношение называется стехиометрия или AFR. Правильно создать эту стехиометрию и есть главная задача любого инжектора или карбюратора. В нашем случае, на инжекторе, это происходит так: электронный блок управления двигателем (ЭБУ) с помощью датчиков на впускном тракте “видит” сколько воздуха поступает во впускной тракт и даёт команду форсункам впрыснуть ровно столько топлива, чтобы в итоге было соотношение 14.7:1 и тогда смесь сгорает без остатка и в выхлопном коллекторе будет совершенно отсутствовать кислород. Если ЭБУ посчитает нужным добавить мощность двигателю, то он начнёт обогащать и смешивать ТВС в пропорции 12.6:1. Если захочет сделать двигатель более экономичным, то он обеднит ТВС до пропорции 15.4:1. Кстати, при прогреве двигателя пропорция ТВС может быть гораздо ниже 12:1, я видел 10:0. Собственно мы это можем увидеть сами на любом сканере, который мы подключим к мозгам своей машины и посмотрим параметр “Target Air/Fuel Ratio”:

Читать еще:  Принцип работы суппорта дискового тормоза

Написанное выше делает _любой_ ЭБУ на _любой_ машине (если в этот ЭБУ не лазили со своими кривыми ручонками всяческие чип-тюнеры) согласно вот этого графика:

Чтобы ЭБУ понял, что он правильно смешал смесь, в выпускной тракт ставится узкополосный датчик кислорода, который проверяет качество сгорания топливо-воздушной смеси и обычно сигнализирует ЭБУ напряжением от 0 до 1 вольта, бедная ли была в цилиндрах смесь или богатая. По-идее, если всё нормально, то ЭБУ во время работы двигателя на “спокойных” режимах должен видеть от лямбда-зонда напряжение равное 0,45 вольта (опорное напряжение), которое соответствует соотношению 14,7:1. Но на практике такой ровной работы инжектора никогда не бывает и ЭБУ получает от лямбда-зонда или сигнал о обеднённой смеси в виде напряжения от 0 до 0,45 вольта или же сигнал о обогащённой смеси в виде напряжения от 0,45 до 0,9 вольта. Видя какое-либо из этих двух состояний, ЭБУ немножечко уменьшает или немножечко увеличивает впрыск топлива форсунками до тех пор, пока лямбда-зонд не поменяет своё состояние на противоположное. В итоге, мы имеем график работы лямбда-зонда в виде большой синусоиды, если с ним всё нормально:

Узкополосный датчик кислорода положено менять раз в 100 тыс.км., т.к. он “устаёт” от времени. Однако он может сдохнуть ещё быстрее от отравления тетраэтилсвинцом, который может присутствовать в некачественном бензине, но может сдохнуть и просто так, к примеру если провода при его замене паяли свинцово-оловянным припоем, поэтому лямбда-зонд паять нельзя, провода соединять надо только через винтовые зажимы. В любом случае, от времени или от свинца лямбда-зонд перестаёт выдавать свою обычную синусоиду и сигнал начинает еле-еле колебаться где-то около нуля вольт. Синусоида становится маленькой и не пересекает границу 0,45 вольта. ЭБУ, видя такое дело, зажигает чек и переходит на аварийный режим работы, сильно обогащая смесь. Но если полудохлый датчик хоть изредка пересекает границу 0,45 вольта, то чек не загорается, просто появляется нереальный расход топлива, ведь датчик всё время показывает ЭБУ бедную смесь. И это самая печальная ситуация.

Итак, ликбез окончен. Начнём практическое применение знаний 🙂

Перед покупкой нового датчика я захотел, чтобы я мог постоянно видеть его работу в виде конкретных цифр стехиометрии. Тогда я мучился с выбором хороших свечей для газа и хотел легко визуально диагностировать пропуски зажигания или пропуски воспламенения в цилиндрах. Для этого я купил широкополосный лямбда-зонд UEGO фирмы АЕМ, в комплект которого входит собственно сам датчик и “мозги”, которые на своём выносном индикаторе показывают стехиометрию в цифровой и визуальной форме (в виде шкалы из светодиодов). Светодиоды я потом немного поменял местами и теперь мне они показывают диапазон богатой смеси жёлтым цветом, оптимальный диапазон — зелёным, а бедную смесь — красным (т.к. это наиболее опасный режим работы, можно спалить клапана).

Индикатор я разместил прямо на приборной панели, чтобы он всегда был в поле периферического зрения.

Чтобы было легче понять, как он работает я снял несколько видео:

1. Двигатель работает на холостом ходу, впрыск на форсунках 2.2 миллисекунды, стехиометрия колеблется около 14,7, как и положено. Я выключаю одну форсунку и можно увидеть как меняются показания ШДК. Он видит в выхлопе много несгоревшего кислорода (один цилиндр гонит воздух) и сразу показывает “бедную” смесь. При этом ЭБУ добавляет впрыск на оставшиеся форсунки до 2,6 миллисекунд, чтобы компенсировать работу неработающего цилиндра.

2. Движение по трассе на круизе. ЭБУ задаёт при равномерном движении стехиометрию 14,7:1, что и показывает мой ШДК колеблясь от 14 до 15. Второй прибор показывает расход в литрах в час (7,5 л/ч), чтобы оценить количество мгновенно сгораемого топлива (не путайте этот параметр с литрами на 100 км.) С 20-й секунды начинается плавное ускорение, ЭБУ меняет стехиометрию на 12,6:1, а диодный индикатор уходит в жёлтую зону. Постепенно литры в час вырастают до 20 л/ч на скорости 120 км/ч. Потом я отпускаю педаль газа, форсунки выключаются, в выхлоп из цилиндров идёт чистый воздух и ШДК начинает показывать бедную смесь вне диапазона измерения.

Широкополосный лямбда-зонд или универсальный лямбда-зонд (LSU)

Широкополосный лямбда-зонд представляет собой новое поколение зондов, многократно используемых в качестве предкатализаторных и имеющих очень широкий диапазон измерений. Это позволяет оптимально использовать их для двигателей, работающих на бедных смесях, газе и дизельном топливе. Значение лямбда выдается не в виде скачкообразно растущей кривой напряжения, как у циркониевого зонда, а в виде почти линейной кривой роста силы тока. Благодаря этому теоретически возможно измерение значения лямбда в большом диапазоне измерений (более широкий диапазон) от Л = 0,7 до Л = бесконечности. Надежно анализируемые сигналы получают при значениях лямбда до 3,4. Значение А определяется не по изменению напряжения, а по изменению силы тока. Рабочая температура в регулируемом диапазоне составляет 750°С. Из-за очень низкого сопротивления нагревательного элемента рабочая температура зонда достигается через 15 секунд. Принципиальная схема LSU-зонда изображена на рисунке.

Рис. LSU-зонд:
1. Электролизный «насос» (ZrO2)
2. Платиновые электроды опорной ячейки
3. Нагревательный элемент
4. Эталонный зазор
5. Керамика из ZrO2
6. Измерительный зазор (диффузионный зазор, 10-50 мкм)
7. Опорная ячейка (измерительная ячейка, ZrOJ
8. Плат иновые электроды опорной ячейки
9, 10. Платиновые электроды электролизного «насоса»

В отличие от зонда с релейной характеристикой напряжение на электродах поддерживается постоянным. Это реализуется с помощью так называемого электролизного «насоса», подающего на электрод со стороны ОГ столько кислорода, чтобы напряжение между электродами всегда составляло 450 мВ. Это соответствует значению Л = 1 в измерительном зазоре. Потребляемый «насосом» ток пересчитывается электронным блоком управления двигателем в значение лямбда. Зонд можно заменять только в комплекте с кабелем и разъемом, так как все компоненты согласованы между собой. Разъемы нужно обязательно защищать от загрязнения, так как через них наружный воздух как эталонный газ подается внутрь датчика. Существуют 6-контактные (Bosch) и 5-контактные (NTK) варианты.

Функция зонда

Рис. Характеристика сигнала LSU-зонда

Протекание сигнала у широкополосного зонда изображено на рисунке В результате подачи напряжения на платиновые электроды электролизного «насоса» кислород перекачивается из ОГ или в ОГ через диффузионный барьер диффузионного зазора. Электроника регулирует напряжение таким образом, что состав смеси в диффузионном зазоре составляет Л = 1 (450 мВ). Протекающий через электроды электролизного «насоса» ток прямо пропорционален концентрации кислорода в ОГ.

При обеднении топливовоздушной смеси содержание кислорода в ОГ повышается, и электролизный «насос» должен откачивать кислород наружу. Соотношение кислорода к наружному воздуху изменяется при постоянной мощности насоса, и напряжение между электродами падает. Чтобы достичь напряжения в 450 мВ между электродами, нужно уменьшить концентрацию кислорода на стороне выпуска. Мощность «насоса» изменяется, и блок управления двигателем пересчитывает потребляемый «насосом» ток в значение лямбда. Состав смеси соответствующим образом изменяется.

При обогащении топливовоздушной смеси содержание кислорода в ОГ снижается, и электролизный «насос» закачивает меньше кислорода в область измерения. Направление тока меняется на обратное, и кислород выкачивается в измерительный зазор из ОГ и из реакции превращения СO2 и Н2O. Напряжение между электродами повышается. Электролизный «насос» должен изменить свою производительность, чтобы содержание кислорода в измерительной камере выросло, и напряжение между электродами снова составило 450 мВ. В таблице показаны значения напряжения зонда с соответствующим значением Л у различных типов топлива. Эти значения могут слегка различаться у отдельных автопроизводителей.

Таблица. Значения напряжения и параметры смеси LSU-зонда

Диагностика по широкополосным лямбда-зондам

Автор: Федор Рязанов

В предыдущих статьях мы с вами рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Так же были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков. Но все автомобилестроители в мире постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Что бы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.

До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, загрязнением атмосферы от них можно было пренебречь. Все сильно изменилось во время автомобильного бума в начале 60-х. Первым от «чуда современной цивилизации» под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «Роза Ветров». Он очень плохо продувается и людям от выхлопных газов просто стало нечем дышать. И был принят ряд законодательных актов, заставляющих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей. На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй мои условия. Таким образом, требования законодательства Калифорнии незаметно распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «Роза Ветров» более благоприятная, и экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» – более жесткие, и «европейские» – чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока только в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках уделялось крайне незначительное внимание. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в ней автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?

Напомню, что такое вредные выбросы. Это не сгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и нас – специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.

Читать еще:  Принцип работы амортизатора

Широкое начало применения лямбда-зондов в автомобилестроении получило еще в конце70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм ЕВРО-4 и ЕВРО-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «Да – Нет». Системе лямбда регулирования постоянно приходиться чуть добавлять и убавлять топливо для того чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент занимают лидирующее положение в автомобилестроении.

Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой BOSCH в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.

Условно систему лямбда-регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1).Зона А – ионный насос, зона В – «скачковый» лямбда-зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.

Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе) и в ней (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель3. Непрогретый лямбда-зонд не работоспособен.

Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да – нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):

  1. Откачать лишний кислород из щели в выхлопные газы. Если избыточный кислород там присутствует. Бедная смесь. Ток положительный.
  2. Закачать недостающий кислород в щель. Если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.
  3. Ничего не делать, если смесь стехиометрическая. Ток нулевой.

Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.

С началом применения широкополосных лямбда-зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).

Если ток не нулевой. Это означает, что системе вывести стехиометрию не удалось. Причин тут две:

  1. Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга. Т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводиться нечасто. Например, два автомобиля Опель Вектра, оборудованные системой впрыска BOSCH и принимавшие участие в съемках фильма ОРТ «Левый Автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.
  2. Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».

Действия диагноста в этих случаях заключаются:

А. Проверка самого лямбда-зонда.

В. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в Интернете и учебных пособиях. Не будем повторяться.

Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.

Первый «подводный камень» заключается в том, что не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен с точностью до наоборот! Положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.

ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.

Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к Рис.1 .

Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. На большинстве сервисов все предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.

Pin 1. Ток ионного насоса. Проводиться миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.

Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производителем. Необходимо свериться с мануалами.

Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.

Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.

Второй «подводный камень» заключается в том, что ЭБУ не может понимать ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводиться не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.

Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находиться система топливоподачи автомобиля.

Третий «подводный камень» заключается в том, большинство широкополосных датчиков не взаимозаменяемы друг с другом. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?

Ответ дают сами производители автомобилей.

Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не состоянии гарантировать правильную работу системы.

Комментарии могут оставлять только зарегистрированные пользователи.

Широкополосный лямбда-зонд занедорого. Чуда не произошло

В один «прекрасный день» жена сообщила «радостную новость» — в машине загорелся чек. Ремонт своей машины всегда даётся тяжело — за него ж не платят 😉

Диагностика показала неисправность первого лямбда-зонда. А лямбда-зонд тут непростой…

Лог я к сожалению не сохранил, но «сгенерировал» вам вот такую подделку:

Address 01: Engine Labels: 06A-906-033-BGU.lbl
Control Module Part Number: 06A 906 033 CA
Component and/or Version: SIMOS71 1.6l 2VG 5755
Software Coding: 0000071
Work Shop Code: WSC 01279 785 00200
VCID: 60CFC6A5B392304189-8034
3 Faults Found:

17589 — Linear O2 Sensor; Reference Voltage
P1181 — 006 — Open Circuit — MIL ON
Freeze Frame:
RPM: 608 /min
Bin. Bits: 00000100
Voltage: 0.000 V
Voltage: 0.440 V

17511 — Oxygen (Lambda) Sensor Heating; B1 S1
P1103 — 009 — Performance too Low
Freeze Frame:
RPM: 1056 /min
Mass Air / Rev.: 267.1 mg/str
Voltage: 1.940 V
Voltage: 14.28 V

19617 — Linear Oxygen (Lambda) Sensor B1 S1; Pump Current Wire
P3161 — 008 — Open Circuit — MIL ON
Freeze Frame:
RPM: 1216 /min
Bin. Bits: 00100000
Voltage: 5.000 V
Voltage: 0.080 V

Новый оригинальный широкополосник стоит весьма значительных денег, при этом датчик от именитого брэнда NTK только чуть дороже какого-нибудь M&D. Принципы такого ценообразования мне не совсем понятны, а кучу денег вываливать — задушила жаба, плюс — интересно же попробовать чего там китайцы изготовили.

Кратенький «экскурс в теорию», для тех кому это интересно. Лямбда-зонды предназначены для достижения правильной смеси, то есть соотношения воздух-топливо — они выдают блоку управления текущее содержание кислорода в выхлопе, на основании чего ЭБУ понимает текущее соотношение воздух-топливо и корректирует топливоподачу. Изначально они предназначались скорее для поддержания оптимальной смеси для работы катализатора. Первые лямбда-зонды были на основе диоксида циркония — это «керамический электролит». Суть работы лямбда-зонда: это батарейка которая работает на разности содержания кислорода по обе стороны от измерительного элемента. Эти лямбда-зонды достаточно примитивны, они по сути могут говорить только богатая смесь или бедная, соответственно коррекция смеси осуществляется «волнообразно» — богатая? бедним. бедная? обогащаем. и так всё время. Для работы лямбда-зондов требуется определенная температура. Первые шли без подогрева, потом начали делать и датчики с подогревом, что способствует более быстрому выходу на рабочий режим.

Читать еще:  Принцип работы предпускового подогревателя

Потом появились лямбда-зонды на основе диоксида титана. Эти датчики также «ступенчатого типа», но работают на другом принципе — у них в зависимости от разности содержания кислорода в глушителе и на улице изменяется сопротивление. Баловалась такими датчиками фирма Сименс, применялись они на Опелях, БМВ и некоторых других марках в середине 90х — начале 2000х. Датчики дорогие, потому что редкие. Отличительная особенность — все провода разных цветов, обычно красный-черный-желтый-белый, бывают только 4-проводные. У циркониевых датчиков может быть один, два, три или 4 провода, в последних двух случаях два из них ВСЕГДА одного цвета.

Японцы баловались еще и датчиками обедненной смеси — штука в наших краях крайне редкая и экзотическая. От обычного циркониевого отличается тем, что может работать в том числе и в режимах переобедненной смеси, но на немного другом принципе — ток через датчик в режимах обедненной смеси зависит от концентрации кислорода. Поэтому в режиме нормальной смеси он работает как обычный датчик, а в режиме обедненной смеси на него подается напряжения и контролируется протекающий ток. Если я, конечно, ничего не путаю.

Ну и в итоге производители придумали широкополосные лямбда-зонды. Отличительная внешняя особенность — 5 проводов. Пара картинок: внутреннего устройства и графика зависимости тока от содержания кислорода (ниже опишу что это)


вот что пишет фирма NTK о принципе действия:

Широкополосные датчики имеют две ячейки — измерительную ячейку и ячейку накачки. С помощью измерительной ячейки измеряется содержание кислорода в отработавшем газе, находящемся в камере детекции и затем сравнивается с заданной величиной 450 мВ.

Если эта величина отличается, то ячейка накачки включает ток накачки, при этом в камеру детекции поступают ионы кислорода до тех пор, пока величина напряжения измерительной ячейки не будет снова соответствовать 450 мВ.

Этот ток накачки является измерительной величиной, которая почти линейно описывает точную лябда-величину смеси. При стехиометрической смеси эта величина равна нулю, поскольку частичное давление кислорода в камере детекции соответствует упомянутой заданной величине.

Теперь я поясню грубо и «на пальцах». Датчик отличается от «обычного» наличием ячейки накачки, которая перегоняет кислород извне в измерительную камеру. Вот значение (и направление) этого тока — и есть величина связанная с коэффициентом избытка воздуха λ. Напомню, что λ 1 — бедная.

Общая идея работы такова: на проводе Vs поддерживается напряжение 450мВ, путём изменения тока накачки Ip. Величина и направление этого тока показывают состав смеси.

Чуть подробнее о типовой схеме включения: компаратор А сравнивает сигнал кислородной ячейки Vs с эталоном 450мВ и выдает результат на контроллер, который управляет источником тока В для поддержания Vs равного эталонным 450мВ. Этот ток (Ip) измеряется операционным усилителем С по падению напряжения на резисторе 62 Ом и включенном параллельно корректирующем резисторе. Значение этого тока и показывает коэффициент избытка воздуха λ. как они связаны — см график выше.

Широкополосники можно условно разделить на два типа — BOSCH и NTK. У них немного отличается конструкция, в частности, у бошевского датчика присутствует внешний калибровочный резистор, у NTK — нет его. Соответственно, и работа ЭБУ с датчиками тоже немного отличается. Кроме того заметно отличается распиновка датчиков, то есть поставить один вместо другого просто так не получится. Внешне проще всего отличить по цветам проводов: у условного боша будет серый-белый-красный-желтый-черный, у условного нтк — серый-белый-синий-желтый-черный

На этом теоретическую часть я думаю можно закончить и перейти к сути обзора.

Я, как вы знаете, молодец, и конечно же не могу без косяков и приключений. поэтому я при выборе датчика заказал «бош», чему был «страшно рад» (кстати, обзор на аналогичный датчик был). Поэтому был заказан уже правильный датчик, ну и вот он у меня в руках.

Самое сложное — выкрутить старый датчик. стоит он в глушителе и как правило значительно пригорает, что крайне затрудняет его выкручивание. А в данном конкретном автомобиле еще и подлезть к нему — нетривиальная задача. Но мне удалось открутить его прям из моторного отсека, потому что из ямы его и не видно даже толком…

Старый датчик:

Вместе с новым:

Ну и группенфото старого датчика с двумя новыми:

Внешний вид датчиков порадовал. Если бы на них написали бош и нтк — я б пожалуй поверил. Сложилось впечатление, что они, в отличие от оригинала, полностью из нержавейки. На разъеме правильного датчика даже «314» написали, как на оригинале. 😉 Единственное отличие — на оригинальном датчике на выходе есть гофра (на фото не видно, спряталась под кембрик), на китайском — провода выходят из датчика без неё. Длина провода как у оригинала.

Вкручиваем датчик, и идём подключать ноутбук и проверять работу.


Коррекции меняются, воздух-топливо меняется, лямбда работает, ошибки не появились.

Счастье однако длилось не долго. Через пару дней начали появляться ошибки по лямбда-зонду:

19058 — Linear Oxygen (Lambda) Sensor B1 S1 Pump Current Trim Circuit
P2626 — 000 — Open
Freeze Frame:
RPM: 1376 /min
Mass Air / Rev.: 87.2 mg/str
Voltage: 5.100 V
Bin. Bits: 00000100
(no units): 0.99
Voltage: 0.000 V

16514 — Oxygen (Lambda) Sensor B1 S1
P0130 — 000 — Malfunction in Circuit
Freeze Frame:

При этом на холостых всё работает отлично, и тесты датчик проходит, но в движении при сбросе газа — увы имеем вот такую картину с большим значением параметра A/F что вроде бы и правильно по логике, но неправильно с точки зрения ЭБУ, и как следствие — вышеприведенные ошибки

Таким образом можно констатировать, что широкополосные датчики — датчики непростые, и могут не работать нормально с некоторыми системами. При этом в данном конкретном случае датчик нормально работает на всех режимах кроме режима принудительного холостого хода (отсечки топлива при сбросе газа). При этом нельзя сказать что датчик работает совсем уж неправильно, но тем не менее такое его поведение не нравится блоку управления и он зажигает лампочку.

На другом блоке управления, другом двигателе, другой машине — «китаец» может и прокатить. Но на двигателе BSE данный датчик работать не захотел. Точнее, с ним не захотел работать блок управления двигателем. Кстати, не исключено что с другой прошивкой — будет работать нормально. Мне же придётся таки купить оригинал (ну, точнее, как «придётся купить оригинал» — собственно, оригинал куплен и установлен, и с ним всё
ок уже пару месяцев)… А эти датчики — я при случае опробую на других машинах, но уже с большой осторожностью, благо знаю что возможны «подводные камни».

Широкополосный лямбда-зонд – особенности работы и диагностика

Широкополосный лямбда-зонд обеспечивает формирование правильной топливно-воздушной смеси в современных двигателях с системой впрыска.

Если этот датчик не работает должным образом, то обеспечение современных экологических норм будет невозможным.

Лямбда-зонд измеряет остаточное содержание кислорода в выхлопных газах и сравнивает его с содержанием кислорода в окружающем воздухе. В результате блок управления двигателем способен регулировать количество впрыскиваемого топлива таким образом, чтобы обеспечивался оптимальный состав топливовоздушной смеси. Это является необходимым условием для эффективной работы каталитического нейтрализатора выхлопных газов. Обычные однополосные лямбда-зонды с технологией диоксида титана и диоксида циркония обнаруживают только переход от богатой смеси (недостаток воздуха) к обедненной смеси (избыток воздуха) и наоборот.

Поскольку современные дизельные и бензиновые двигатели работают вне стехиометрического соотношения лямбда = 1, были разработаны так называемые широкополосные лямбда-зонды. Широкополосный зонд имеет более широкий диапазон измерения и точно измеряет как в богатых, так и в бедных областях. Широкополосные зонды внутри оснащены двумя ячейками: измерительной и ячейкой накачки. В измерительной ячейке измеряется концентрация кислорода, а затем преобразуется в сигнал напряжения, который сравнивается с опорным напряжением 450 мВ. Если это значение отклоняется от эталонного значения, включается ячейка накачки и ионы кислорода поступают в или из измерительной ячейки для коррекции концентрации кислорода, таким образом, чтобы опорное напряжение поддерживалось на уровне 450 мВ. Значение и полярность электрического тока, требуемого ячейкой накачки для поддержания постоянной концентрации, представляют собой эквивалент концентрации кислорода в смеси. Если лямбда-зонд выходит из строя, сжигание в современном двигателе больше не может контролироваться должным образом, что отрицательно сказывается на составе и эффективности очистки выхлопных газов.

Измерение сигнала и диагностика лямбда-зонда

Чтобы проверить функцию лямбда-зонда, сначала необходимо установить зонд в разъем. В VW Passat B7 с двигателем 1,6 TDI оба расположены непосредственно в моторном отсеке. Чтобы проверить включение нагревательного контура и встроенного нагревательного резистора, необходим мультиметр для измерения напряжения и сопротивления зонда. Для проверки электрического управления нагревательным контуром необходим осциллограф. Наблюдение за работой лямбда-зонда проводят при помощи диагностического устройства. Однако это относится только к бензиновым двигателям, где значение лямбда находится в границах 1 в двигателях с впрыском перед впускным клапаном и может варьироваться в пределах от 0,8 до 2,5 в силовых установках с непосредственным впрыском. В дизелях нет смысла наблюдать за сигналом лямбда-зонда, так как они всегда работают в очень широком диапазоне состава смеси. Значение лямбда в дизеле может изменяться от 1,4 до 12. Используя данные диагностического устройства, теперь можно контролировать ток накачки как положительное или отрицательное значение изменения коэффициента избытка воздуха. Некоторые диагностические устройства также отображают графическое изменение значения коэффициента лямбда на дисплее. Основываясь на полярности (плюс или минус) тока накачки, теперь можно определить, работает ли двигатель с богатой или бедной смесью. Отрицательные значения сигнала указывают на богатую смесь, а положительные – на обедненную. На практике значение лямбда быстро переходит в отрицательный диапазон (богатая смесь). Если убрать ногу с педали акселератора после короткого нажатия, значение лямбда должно быстро перемещаться в положительный диапазон (обедненная смесь). Плохие или аномальные сигналы от широкополосных лямбда-зондов могут иметь много причин и не обязательно должны быть связаны с неисправным лямбда-зондом. Одной из причин может быть неправильное измерение массы воздуха, что приводит к плохому управлению впрыском. Проблемы с топливным насосом и форсунками также могут вызывать неправильные значения. То же самое относится к утечкам воздуха в выхлопной системе или в цепи впуска воздуха, а также к проблемам в системе зажигания. Причиной может быть также плохое состояние двигателя и неисправный клапан EGR.

Ссылка на основную публикацию
Adblock
detector