Как правильно двигатели или двигателя
Autoservice-ryazan.ru

Автомобильный портал

Как правильно двигатели или двигателя

Разница между мотором и двигателем

«Автомобильный мотор, автомобильный двигатель» — оба эти выражения на равных используются в русской речи. «Лодочный двигатель» — звучит несколько непривычно. Словосочетание «реактивный мотор» можно встретить разве что в плохом автоматическом переводе иностранного текста. В чем же различие этих понятий? Попробуем разобраться в вопросе, не углубляясь в академические дебри русского языка.

Мотор

  • Двигатель (внутреннего сгорания или электрический)- так определяет это слово толковый словарь Ожегова.
  • Сердце или машина — такое толкование слова предлагает словарь воровского жаргона.
  • В словаре Ушакова можно обнаружить еще одно значение слова: экипаж, вагон с двигателем, автомобиль.

Термин «мотор» согласно этимологическому словарю русского языка Макса Фасмера заимствован из немецкого языка. Латинские корни прослеживаются в других европейских языках: немецкий «Моtоr», французский «Moteu, английский «Моtоr».

Наиболее часто слово мотор употребляется в значении электрического двигателя или двигателя внутреннего сгорания: электрический мотор, авиационный мотор, лодочный мотор.

Широко используется при образовании сложных слов: мотопомпа, мотопехота, гидромотор. От слова мотор образованы прилагательные «моторный», «моторизированный».

Двигатель

  • Толковый словарь Ожегова выделяет два значения этого термина. Первое — машина, превращающая какой-либо вид энергии в механическую работу. Второе (переносное) — сила, способствующая росту, развитию в какой-либо области.
  • В словаре Ушакова можно найти еще одно, толкование: машина, приводящая что-нибудь в движение.
  • В других словарях двигатель называется механизмом, агрегатом, силовой машиной, энергосиловой машиной, устройством, но смысл один – преобразование какой-нибудь энергии в механическую энергию или работу.

Слово произошло от глагола «двигать», в современном значении стало употребляться в конце ХVIII века, имеет схожие корни в других восточноевропейских языках. Слово «двигать» отмечается в различных письменных источниках, начиная XI века.

Термин двигатель более распространен в технической литературе. Он охватывает широкую группу понятий, в том числе самые древние и экзотические устройства для приведения в движение чего-либо. Этим словом можно назвать приспособление для движения парусного судна (ветродвигатель), гиревой привод часов-ходиков (гравитационный) или двигатель космической ракеты (реактивный).

Сходство терминов мотор и двигатель

Рассмотренные выше словари определяют данные слова как синонимы. И, действительно, в большинстве случаев оба эти термина употребляются для обозначения устройства, приводящего в движение какой-либо механизм. Если слово применяется для обозначения энергетической установки транспортного средства, промышленного оборудования или бытового устройства, то эти понятия являются равнозначными, а смысловые нюансы незначительными.

Рассмотрим некоторые случаи, когда один из терминов можно заменить другим, без искажения смысла и нарушения стилистики речи:

  • Относится к электрической машине: электромотор, электродвигатель.
  • Относится к двигателю внутреннего сгорания: бензиновый мотор (двигатель).
  • Обозначает силовую установку механического транспортного средства: автомобильный мотор (двигатель).
  • Является приводным устройством для станка, ручного инструмента, бытовой техники: мотор (двигатель) токарного станка.

Различия, особенности употребления

Рассматривая случаи употребления того и другого термина, можно сделать такие наблюдения:

  1. В технической литературе электрическая силовая машина в большинстве случаев называется двигатель. Например: электродвигатель постоянного тока, асинхронный двигатель.
  2. В художественной литературе, в стихах, текстах песен чаще встречается слово мотор.
  3. Двигатель включает более широкую группу понятий, тогда как мотор это преимущественно электродвигатель или ДВС.
  4. Силовую установку, смонтированную на транспортном средстве, обычно называют двигатель, а отдельный агрегат – мотор.
  5. Для обозначения машин небольшой мощности чаще используют слово мотор. Мотор пылесоса, лодочный мотор.
  6. Для мощных устройств используются термины двигатель, силовой агрегат.

Несколько примеров, когда замена одного термина другим будет выглядеть неуместно:

  • Реактивный, ветровой, паровой двигатель.
  • Моторная лодка, моторный завод, моторный отсек автомобиля.
  • Сердце — пламенный мотор, реклама — двигатель торговли.
  • Моторчик, микродвигатель.

Любопытные факты

Интересно, что в английском языке тоже есть два термина для обозначения «сердца» автомобиля: «motor» и «engine». В настоящее время эти понятия стали синонимами, а в XV веке словом engine называли орудие пыток, ловушку, а также хитрость или злой умысел.

Самые большие двигатели устанавливается на океанских судах. Самыми большими двигателями являются судовые! Они достигают мощности свыше 100000 л.с., цилиндр имеет диаметр около 1 метра.

Мы привыкли, что мотор непрерывно вращается, но, оказывается, есть особый двигатель, который может поворачиваться на определенный угол (шаг). Шаговый двигатель применяется, например, в электронных стрелочных часах.

Краткий итог

Это исследование не претендует на исключительную глубину и научность, но позволяет сделать определенные выводы. С технической точки зрения сложно выделить какие-то характерные особенности в понятиях мотор и двигатель. Различия заключаются, прежде всего, в особенностях употребления этих слов в текстах различных стилей и назначений.

Слово мотор, пришедшее в русский язык на заре автомобилестроения постепенно становится менее употребительным, а двигатель, как более универсальное понятие, встречается все чаще, особенно в специальной литературе и в профессиональной речи.

Контрактные двигатель и коробка — все ваши риски. Советы эксперта

Часто приходится слышать, что вместо ремонта агрегата владелец предпочитает купить контрактный. Не все знают, что кроется под таким названием. «За рулем» помогает разобраться и выбрать оптимальный вариант для покупки.

Что такое контрактный двигатель или коробка передач?

Контрактным двигателем или коробкой передач называется агрегат, который демонтирован с битого или списанного в утиль автомобиля и выставлен на продажу для дальнейшего использования по назначению.

Еще одним источником таких агрегатов являются разборки краденых автомобилей.

Впрочем, проследить всю историю приобретения зачастую сложно.

Контрактный агрегат — это законно?

С недавних пор замену двигателя не нужно согласовывать в ГИБДД. В свидетельстве о регистрации не указывается номер, выбитый на блоке цилиндров. Теперь заменить мотор намного проще. Ну а коробки передач и раньше можно было менять без согласования с ГИБДД.

В каком случае стоит задуматься о контрактном агрегате?

Пока машина защищена гарантией, о контрактном моторе или коробке передач даже речи не идет. Неисправность устранят официальные дилеры. Но годы идут, машина стареет, порой меняет хозяина, и тут один из двух основных агрегатов, мотор или коробка, выходит из строя. Речь идет о крупной поломке, можно сказать, аварии агрегата. Например:

Двигатель

  • Обрыв шатуна, сопровождающийся пробитой стенкой блока цилиндров, — «рука дружбы»
  • «Размораживание» двигателя, которое вызвано замерзанием воды в системе охлаждения. При оттаивании возникают трещины головки и блока цилиндров.
  • Трещины и коробление основных деталей, например в результате ДТП.
  • Задиры коренного вкладыша коленвала, сопровождающиеся повреждением постели в блоке цилиндров.

Коробка передач

  • Выход из строя подшипников и шестерен, сопровождающийся разбиванием посадочных поверхностей в корпусных деталях, либо трещинами корпусов.
  • Повреждение большого количества шестерен и муфт в коробке из-за отломившейся детали.
  • Обрыв ремня вариатора, который привел к повреждению корпусных деталей.
  • Трещины корпуса коробки передач в результате ДТП.

Как правило, во всех вышеописанных ситуациях стоимость ремонта двигателя или коробки передач становится слишком велика: она сопоставима со стоимостью контрактного двигателя, включая работу по его замене.

Откуда берутся контрактные агрегаты?

Конечно, нужно постараться найти агрегат с минимальным пробегом и, соответственно, мало изношенный. Учтите, что выясняя историю покупки, вы можете наткнуться на неприятные подробности. К примеру, контрактный агрегат могли снять либо с краденого автомобиля, либо с попавшего в страшную аварию, в которой погибли люди.

Где купить контрактный агрегат?

Контрактный агрегат стоит приобретать не у частных лиц и не в совсем мелких безымянных конторах. Существуют относительно крупные фирмы, специализирующиеся на разборке автомобилей европейского, японского и корейского производства. Такие обычно дают гарантию на приобретенный агрегат. Не очень продолжительную, но это лучше, чем ничего. Они проводят предпродажную подготовку двигателя и его диагностику. Важно полное юридическое оформление сделки. Тогда в случае чего вы сможете предъявить претензии продавцу. Лучше всего работу по замене агрегата на контрактный проводить в той же фирме, где и была совершена покупка.

Сколько стоит контрактный агрегат?

Конечно, контрактный двигатель заметно дешевле, чем новый мотор или даже шорт-блок — нижняя часть двигателя с коленвалом и поршневой группой. Например, новый двигатель на Ладу Гранту можно приобрести по цене от 60 000 рублей. А стоимость контрактного мотора — от 15 000 рублей. При этом качественный ремонт с заменой всех необходимых узлов обойдется лишь немного дешевле, чем новый мотор.

Примерно такое же соотношение цен нового и контрактного моторов получается и в случае с иномаркой, только новый двигатель обойдется приблизительно в 3–4 раза дороже, чем его качественный ремонт.

В случае с коробками передач ценообразование схожее. Качественное восстановление отечественной механической КП по стоимости приближается к цене новой, а контрактную коробку передач можно купить за намного меньшие деньги.

Сложные по конструкции гидромеханические, роботизированные коробки передач и вариаторы в ремонте слишком дороги. Контрактный агрегат зачастую обходится дешевле. Например, ремонт весьма распространенного вариатора JF011E после разрушения ремня с повреждением конусов обойдется в 40 000 рублей, а контрактный вариатор можно приобрести за 32 000 рублей.

В чем плюсы и минусы контрактной детали?

Главное преимущество контрактных агрегатов — это скорость замены. Коробку передач однозначно заменят за один день, ну а с двигателем провозятся не более двух. Капитальный ремонт может растянуться и на неделю.

Читать еще:  Специалист по диагностике автомобилей

Есть мнение, что после установки «кота в мешке» в виде контрактного агрегата лучше машину продать. Возможно, и так. Если машина действительно проблемная. А если автомобиль до сих пор не был в авариях, то есть не срабатывала ни одна подушка безопасности, все работает отлично и только один агрегат вышел из строя, то его есть смысл заменить контрактным, а продавать саму машину не стоит. Вряд ли вы найдете на вторичке столь же ухоженную альтернативу с прозрачной историей.

А что, если продать аварийную машину?

Может быть, не ремонтировать и не менять на контрактный агрегат, а сразу продать машину не на ходу? Не советую. Дело в том, что машины не на ходу, с вышедшим из строя двигателем или поврежденной коробкой удается продать намного ниже рыночной стоимости экземпляра на ходу. Впрочем, если вам важнее время, то можно пойти и таким путем.

Расскажите в комментариях о своем положительном или отрицательном опыте использования контрактных агрегатов.

8 самых известных типов двигателей в мире и их отличия

После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире.

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы.

1. Оппозитный двигатель

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС.

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются.

2. Рядный двигатель

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

3. Двигатель V-типа (V-образный силовой агрегат)

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше.

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG.

4. Квазитурбинный двигатель

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии.

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа.

5. Роторный двигатель

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов.

6. Двигатель Green Steam

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д.

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

7. Двигатель Стирлинга

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух.

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок.

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество.

8. Радиальный двигатель (звездообразный)

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна.

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму.

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

Электродвигатели

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является – электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Конструкция электродвигателя

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор – неподвижная часть, ротор – вращающаяся часть.

У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Принцип работы электродвигателя

    Подробное описание принципа работы электродвигателей разных типов:
  • Принцип работы однофазного асинхронного электродвигателя
  • Принцип работы трехфазного асинхронного электродвигателя
  • Принцип работы синхронного электродвигателя

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией 1 (вентильный 2, 3 ) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока 4 Переменного тока
  • Универсальный
  • Репульсионный
  • КДПТ с обмоткой возбуждения
      Включение обмотки
    • Независимое
    • Последовательное возбуждения
    • Параллельное
    • Комбинированное
  • КДПТ с постоянными магнитами
  • БДПТ
    (Бесколлекторный двигатель + ЭП |+ ДПР)
  • ВРД
    (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
  • Трехфазный
    (многофазный)
    • АДКР
    • АДФР
  • Двухфазный
    (конденсаторный)
  • Однофазный
    • с пусковой обмоткой
    • с экранированными полюсами
    • с асимметричным магнитопроводом
  • СДОВ
    (с контактными кольцами и щетками) –>
  • СДПМ 5 –>
    • СДПМВ
    • СДПМП
    • Гибридный
  • СРД
  • Гистерезисный
  • Индукторный
  • Гибридный СРД-ПМ
  • Реактивно-гистерезисный
  • Шаговый 5
Простая электроника Выпрямители,
транзисторы
Более сложная
электроника
Сложная электроника (ЧП)
  1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, – датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
  2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря [5].
  3. Вентильный электродвигатель постоянного тока – электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля [1].
  4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
  5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
  • КДПТ – коллекторный двигатель постоянного тока
  • БДПТ – бесколлекторный двигатель постоянного тока
  • ЭП – электрический преобразователь
  • ДПР – датчик положения ротора
  • ВРД – вентильный реактивный двигатель
  • АДКР – асинхронный двигатель с короткозамкнутым ротором
  • АДФР – асинхронный двигатель с фазным ротором
  • СДОВ – синхронный двигатель с обмоткой возбуждения
Читать еще:  Как работает водородный двигатель

Типы электродвигателей

Коллекторные электродвигатели

Коллекторная машина – вращающаяся электрическая машина, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором [1]. В коллекторном двигателе щеточно-коллекторный узел выполняет функцию датчика положения ротора и переключателя тока в обмотках.

Универсальный электродвигатель

Коллекторный электродвигатель постоянного тока

Бесколлекторные электродвигатели

У бесколлекторных электродвигателей могут быть контактные кольца с щетками, таким образом не надо путать бесколлекторные и бесщеточные электродвигатели.

Бесщеточная машина – вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без скользящих электрических контактов [1].

Асинхронный электродвигатель

Cинхронный электродвигатель

Специальные электродвигатели

Серводвигатель

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) – векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном – номинальная частота вращения, мин -1 [4]

Начальный пусковой момент – момент электродвигателя при пуске.

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя – это полезная механическая мощность на валу электродвигателя.

Механическая мощность

Мощность – физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t – время, с

Работа – скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы [2].

,

Для вращательного движения

,

  • где – угол, рад,

,

  • где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя – характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 – подведенная мощность (электрическая), Вт,
  • P2 – полезная мощность (механическая), Вт
    При этом потери в электродвигатели обусловлены:
  • электрическими потерями – в виде тепла в результате нагрева проводников с током;
  • магнитными потерями – потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями – потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями – потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Частота вращения

  • где n – частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции – скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м 2 ,
  • m – масса, кг

1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

Момент инерции связан с моментом силы следующим соотношением

,

  • где – угловое ускорение, с -2 [2]

,

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) – напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики [3].

Электрическая постоянная времени

Электрическая постоянная времени – это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

  • где – постоянная времени, с

Механическая характеристика

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Сравнение характеристик внешне коммутируемых электрических двигателей

Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

Параметр
АДКР

СДПМП

СДПМВ

СРД-ПМ

СДОВ
Постоянство мощности во всем диапазоне скоростей
Момент к току статора
Эффективность (КПД) во всем рабочем диапазоне
  • АДКР – асинхронный двигатель с короткозамкнутым ротором
  • СДПМП – синхронный двигатель c поверхностной установкой постоянных магнитов
  • СДПМВ – синхронный двигатель со встроенными постоянными магнитами
  • СРД-ПМ – синхронный реактивный двигатель с постоянными магнитами (синхронный гибридный двигатель)
  • СДОВ – синхронный двигатель с обмоткой возбуждения

В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне [7].

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии [6].

Электродвигатель или ДВС? Плюсы и минусы двух технологий

В данной статье рассматриваются ключевые преимущества и недостатки электромобилей по сравнению с автомобилями c ДВС. Рассмотрены аспекты надежности и долговечности, стоимость обслуживания, скорость, безопасность, запас хода и наличие необходимой инфраструктуры.

Надежность и долговечность

Электромобили значительно надежнее, чем их бензиновые, дизельные и газовые собратья. В них меньше подвижных и изнашиваемых частей, так как двигатель и коробка передач устроены гораздо проще.

В популярном американском электрокаре Chevrolet Bolt всего 35 подвижных частей, которые подвержены износу. В бензиновом автомобиле того же класса Volkswagen Golf таких частей 167.

Кроме того, ДВС из-за своей неэффективности выделяют большое количество тепла во время работы, что ускоряет износ компонентов силового агрегата.

Единственная часть электромобиля, которая может вызывать опасения в плане надежности, это аккумуляторная батарея. Со временем она деградирует, то есть теряет часть своей изначальной энергетической емкости. Однако статистические данные позволяют судить о том, что при надлежащем уходе очень маловероятно, что батарея потеряет более 20% емкости до пробега 250000 км.

На сегодняшний день лишь у 0,003% электромобилей наблюдаются проблемы с батареей, которые требуют её замены до окончания расчетного срока службы транспортного средства (8-10 лет).

Стоимость обслуживания и эксплуатации

Следствием высокой надежности электромобилей являются низкие затраты их владельцев на ремонт и обслуживание.

По данным Американской ассоциации автомобилистов, при 240000 км пробега электромобиль в среднем требует на $2100 рублей меньше расходов на ремонт и замену изношенных частей, чем обычный автомобиль того же класса.

В дополнение к этому, у электрических транспортных средств существенно меньше расходных материалов и жидкостей, требующих регулярной замены. Их тормозные колодки изнашиваются медленнее благодаря технологии рекуперативного торможения.

Наконец, автомобили с электрическим двигателем позволяют крупно сэкономить на топливных расходах. Полная зарядка электричеством даже в пиковые часы будет обходиться владельцу машины дешевле, чем заправка бака обычного автомобиля самым дешевым топливом — сжатым природным газом.

К 100 тыс. км пробега топливная экономия от использования электричества вместо бензина составит около 300 тыс. рублей (при зарядке в ночное время).

Стоимость покупки

Одним из главных на сегодняшний день недостатков электромобилей является их высокая стоимость, которая обусловлена дороговизной аккумуляторных батарей. При отсутствии государственных субсидий и налоговых льгот покупка электромобиля пока не может быть экономически обоснована, даже с учетом экономии при эксплуатации.

Динамика цен на аккумуляторные ячейки позволяет прогнозировать паритет стоимости электромобилей и автомобилей с ДВС не раньше, чем к началу 2020-х годов.

Запас хода

На данный момент, электромобили всё еще отстают от бензиновых и дизельных автомобилей по запасу хода. Лишь немногие модели способны проехать на одном заряде более 500 км. Более того, в условиях низких температур эффективность батарей падает, на обогрев салона требуется дополнительная энергия, поэтому запас хода может уменьшиться на 20%.

Исследование, проведенное в Массачусетском Технологическом Институте, показало, что запас хода современных бюджетных электромобилей достаточен, чтобы покрыть ежедневные нужды 87% американцев без дополнительной подзарядки в течение дня.

С развитием аккумуляторных технологий отставание от бензиновых и дизельных автомобилей удастся сократить, а строительство скоростных зарядных станций вдоль автомагистралей позволит использовать электромобили для дальних поездок (см. п.7).

Скорость и безопасность

Электродвигатели не требуют коробки передач и способны мгновенно передавать максимальный крутящий момент на колеса, благодаря чему электромобили очень динамичны и позволяют безопасно проводить обгоны.

Электрический седан Tesla Model S P100D является одним из самых быстрых серийных автомобилей на планете с разгоном 0-100 км/ч за 2,5 секунды.

Электрическая силовая установка является более эффективной (КПД>90%), чем ДВС и позволяет моментально изменять усилие на каждом из ведущих колес. Это даёт электромобилям высокую курсовую устойчивость и снижает риск заноса.

Низкое расположение аккумуляторной батареи понижает центр тяжести и повышает жесткость кузова, что положительно сказывается на управляемости.

Отсутствие массивного двигателя в передней части электромобиля создает своего рода «буферную зону», смягчающую последствия фронтального столкновения. А наличие батареи под полом защищает пассажиров от боковых ударов.

Технологичность

В электрический транспорт проще интегрировать технологии автономного вождения (автопилот).

Недавно американская компания Waymo (подразделение Google, входящее в холдинг Alphabet), объявила о закупке 20 тысяч электромобилей Jaguar I-Pace для организации собственного сервиса беспилотного такси в США.

Еще одной технологией, доступной только для электромобилей является Vehicle-to-Grid (V2G), которая позволяет сделать их частью энергетической системы. Электрические авто при этом помогают сбалансировать нагрузку на энергосеть и вдобавок дают возможность своим владельцам немного подзаработать на разнице ночных и дневных тарифов.

Удобство зарядки/заправки

Одним из факторов, сдерживающих распространение электромобилей, является медленная скорость зарядки и недостаточное количество зарядных станций.

Количество публично доступных зарядных станций увеличивается, их уже около 500 тысяч, а отношение к количеству электромобилей на дорогах на данный момент составляет 1:6. Тем не менее, мощность большинства публичных зарядных станций не превышает 50кВт. Это значит, что для полной зарядки электромобиля требуется больше часа, в то время как на заправку топливного бака обычного автомобиля уходит не более 10 минут.

Ситуация усугубляется большим количеством стандартов зарядных разъемов, это приводит к несовместимости некоторых моделей электромобилей с зарядными станциями определенного типа. Но, благодаря международному сотрудничеству автопроизводителей, в 2011 году удалось разработать универсальный зарядный стандарт ССS. Он позволяет сочетать зарядку с использованием постоянного и переменного тока, а его последние модификации имеют максимальную мощность в 350 кВт, которая позволяет зарядить электромобиль за 15 минут. На данный момент строительство зарядных станций данного типа активно ведется в ЕС, США, Японии и Китае, однако пока ни один электромобиль не поддерживает зарядку такой мощности.

Экологичность и низкий уровень шума

Производство электромобилей наносит больший экологический вред, чем производство автомобилей с ДВС. Причина — энергоемкость и ресурсоемкость производства батарей, содержащих редкоземельные металлы.

На этап производства приходится около половины всех выбросов парниковых газов за весь жизненный цикл электромобилей.

Тем не менее, большинство научных исследований сходятся на том, что электромобили полностью компенсируют большее экологическое воздействие на производственном этапе меньшими выбросами в процессе эксплуатации. Скорость, с которой они «выходят в плюс» напрямую зависит от уровня развития ВИЭ и других низкоуглеродных источников энергии.

В Норвегии, которая более 95% электроэнергии получает от электростанций — это 25000км пробега, для Москвы (ТЭС на природном газе) — примерно 70000км.

Не стоит забывать, что в месте эксплуатации электромобилей выбросы отсутствуют. Это позволяет вынести загрязнения за пределы городов в районы расположения электростанций, где относительно низкая плотность населения.

Также для электромобилей, в сравнении с традиционными автомобилями, характерно низкое шумовое загрязнение.

Обобщая всё вышесказанное, можно сделать вывод, что на текущей стадии развития технологий, электрические авто уже обладают рядом бесспорных преимуществ по сравнению с бензиновыми и дизельными автомобилями, а в будущем они будут только усиливаться.

Vassoo7 › Blog › Что нужно знать о прогреве двигателя? Разбираем мотор по винтикам

Что нужно знать о прогреве двигателя? Разбираем мотор по винтикам

Основная проблема холодного пуска — это большая разница температур между горящим газом и частями двигателя. Сразу после запуска металлические стенки начинают поглощать тепло. Поскольку все компоненты мотора изготовлены из разных материалов и обладают разной теплопроводностью, в ходе теплообмена металлы начинают “играть”, другими словами — притираться. Когда температура алюминиевой ГБЦ приблизилась к рабочей, алюминий, вследствие своих физических свойств, начинает расширяться. При этом крепёжные винты, ещё не прогретые в достаточной степени, препятствуют расширению металла. Этот процесс создаёт значительное напряжение в конструкции.

Выпускные клапаны и поршни

То же самое с поршнями: их расширение больше в верхней части, которая поглощает тепло из рабочего газа. А, например, выпускные клапаны нагреваются быстро, но имеют коэффициент расширения ниже, чем у ГБЦ. После того, как температура стабилизируется, все компоненты мотора должны войти в режим работы, который был рассчитан на фазе проектирования. Таким образом, после прогрева рабочая температура двигателя перестаёт зависеть от температуры окружающей среды.

Не менее важны процессы, происходящие с холодным двигателем на уровне смазки. При низких температурах масло становится более вязким, значит, течёт хуже. Высокая вязкость масла приводит к увеличению давления во всей смазочной системе. Чтобы избежать чрезмерно высокого давления, масляный насос оснащён предохранительным клапаном. На “холодную” клапан открывается и выпускает избыточную часть смазки в поддон. Тот факт, что масло ещё слишком вязкое и его излишки стравливаются, приводит к тому, что смазке необходимо длительное время после пуска, чтобы добраться до всех компонентов мотора, смазать их и установить рабочее давление в системе. Именно поэтому первые несколько минут мы слышим, что двигатель работает шумно.

Таким образом, “на холодную” смазка в системе циркулирует в недостаточном объеме и довольно медленно. Существуют масла с низкой вязкостью, что заметно улучшает ситуацию, но не решают проблему полностью. Следует также отметить, что масло прогревается значительно медленнее, чем охлаждающая жидкость в радиаторе. Именно поэтому в гражданских автомобилях антифриз в системе охлаждения предпочтительнее, чем масляные радиаторы: при низких температурах износ деталей увеличивается, и с этой точки зрения быстрый прогрев выгоднее.

В прошлом автолюбители сталкивались с куда большими трудностями при прогреве мотора. После пуска карбюраторного ДВС необходимо было открыть “подсос”, заслонку, вследствие чего в камеру попадала обогащённая горючая смесь. Мотор работал неравномерно на чрезмерно высоких оборотах. С появлением инжектора топливо стало распыляться мельче и испаряться быстрее, практически не конденсируясь на металлических стенках. Кроме того, благодаря развитию электроники, сегодня топливо дозируется с ювелирной точностью даже в экстремально холодных условиях эксплуатации.

Как правильно прогревать мотор?

Двигатель должен прогреваться постепенно и в меру быстро. Стоять на месте с включённым двигателем более 1-2 минут, как это было во времена карбюраторных моторов, сегодня контрпродуктивно (а в некоторых странах даже запрещено): на холостых оборотах мотор прогревается медленнее, чем во время движения транспортного средства. Тем самым мы только продлеваем работу двигателя под нагрузкой. Педаль акселератора на автомобиле рекомендуется держать слегка нажатой (т.е. начинать движение плавно, размеренно переключая передачи). Чем выше обороты, тем больше сжигается топлива за единицу времени и выделяется больше тепла, следовательно, нагрев происходит быстрее. Такой режим, безусловно, способствует меньшему выделению выхлопных газов, т.к. катализатор должен работать при определённой температуре, чтобы выполнять свою прямую функцию. Чем быстрее он выйдет на рабочую температуру, тем лучше для окружающей среды.

Но важно не перестараться при старте. Чрезмерно резкое воздействие на педаль акселератора способствует аномальному термическому напряжению между металлическими стенками и горючей смесью. Слишком быстрое расширение металлу противопоказано. Здесь мы имеем дело с его “термической усталостью”, которая может привести к разрушению металла и трещинам. Скорость автомобиля должна быть низкой ещё и потому, что в момент прогрева в двигателе циркулирует недостаточное количество масла.

Таким образом, лучше всего начинать движение практически сразу после холодного старта, сохраняя низкую скорость и без спешки переключая передачи. Подачу газа стоит увеличивать пропорционально по мере прогрева двигателя. Конечно, начинать двигаться сразу можно только в том случае, если обледенелое стекло позволяет видеть дорогу.

Ссылка на основную публикацию
Adblock
detector