Как работает стабилизатор
Autoservice-ryazan.ru

Автомобильный портал

Как работает стабилизатор

Как работает стабилизатор напряжения — основные параметры и функции

Стабилизатором напряжения называется устройство, к которому подключается напряжение на его вход, с неустойчивыми и нестабильными свойствами для нормальной работы потребителей. На выходе прибора напряжение имеет необходимые качества и свойства, способствующие нормальному функционированию нагрузки потребителей.

Стабилизаторы постоянного тока

Питание сети постоянного тока требует выравнивания при входном напряжении ниже или выше допустимого предела. При протекании тока по стабилизатору, оно выравнивается до необходимой величины. Также схему стабилизатора можно выполнить со сменой полярности питания.

Линейные

Такой прибор является делителем, на который поступает нестабильное напряжение, а на его выходе напряжение выравнивается и имеет необходимые свойства. Его принцип действия состоит в постоянном изменении значения сопротивления для создания выровненного питания на выходе.

  • При эксплуатации отсутствуют помехи.
  • Простое устройство с малым числом деталей.
  • При значительной разнице выходящего и входящего питания линейный стабилизатор показывает малый КПД, так как значительная часть производимой мощности переходит в тепло и расходится на сопротивлении.

Параметрический

Такое исполнение прибора с контрольным элементом, подключенным параллельно нагрузке, выполнено на полупроводниковых и газоразрядных стабилитронах.

По стабилитрону проходит ток, который выше в десять раз тока на резисторе. Поэтому такая схема подходит для стабилизации питания только в маломощных устройствах. Чаще всего его применяют в качестве составного компонента преобразователей тока со сложной конструкцией.

Последовательный

Работа прибора видна на изображенной схеме.

Эта схема соединяет два компонента:

  1. Биполярный транзистор, повышающий ток. Он является эмиттерным повторителем.
  2. Параметрический стабилизатор, рассмотренный выше.

Выходное напряжение не зависит от проходящего по стабилитрону тока. Однако оно зависит от вида вещества полупроводника. По причине сравнительной независимости этих величин выходное напряжение получается устойчивым.

При протекании по транзистору напряжение на выходе прибора повышается. При применении одного транзистора напряжение может не удовлетворить потребителя. В этом случае выполняют прибор из нескольких транзисторов, чтобы повысить ток до необходимой величины.

Компенсационный последовательный

Компенсационный последовательный стабилизатор имеет обратную связь. В нем выходное напряжение сравнивается с эталоном. Разница между ними нужна для создания сигнала устройству, контролирующему напряжение.

С сопротивления снимается некоторое количество выходного напряжения, сравнивающееся с основным значением стабилитрона. Эта разница поступает на усилитель и подается на транзистор.

Устойчивое функционирование создается при сдвиге фаз. Так как часть напряжения на выходе поступает на усилитель, то оно сдвигает фазу на угол 180 градусов. Транзистор, подключенный по типу усилителя, фазы не сдвигает, и петлевой сдвиг равен 180 градусов.

Импульсные

Электрический ток, обладающий неустойчивыми свойствами, с помощью коротких импульсов поступает на устройство накопления стабилизатора, которым является конденсатор или катушка.

Накопленная энергия далее выходит на потребитель с другими свойствами. Есть два способа стабилизации:

  1. Управление длиной импульсов.
  2. Сравнение выходного напряжения с наименьшим значением.

Импульсный стабилизатор может изменять напряжение с разными результатами. Их делят на виды:

  • Инвертирующий.
  • Повышающе-понижающий.
  • Повышающий.
  • Понижающий.
  • Помехи в виде импульсов на выходе.

Стабилизаторы переменного напряжения

Такие приборы предназначены для выравнивания переменного напряжения независимо от его параметров входа. Выходное напряжение должно быть в виде идеальной синусоиды, независимо от входных дефектов питания. Различают несколько видов стабилизаторов

Накопители

Это стабилизаторы, накапливающие энергию от входного источника, а далее энергия создается снова, однако уже с постоянными параметрами.

Двигатель-генератор

Принцип работы стабилизатора напряжения такого типа состоит в изменении электроэнергии в кинетический вид, применяя электродвигатель. Далее генератор снова производит обратное изменение, уже с постоянными параметрами.

Основным компонентом системы является маховик, накапливающий энергию и выравнивающий напряжение. Он соединен с подвижными элементами генератора и двигателя, имеет большую массу, инерцию, которая сохраняет быстродействие. Так как скорость маховика постоянная, то напряжение также будет постоянным, даже при малых перепадах напряжения на входе.

Феррорезонансный

  • Конденсатор.
  • Катушка с ненасыщенным сердечником.
  • Катушка индуктивности с насыщенным сердечником.

К катушке с сердечником насыщенным приложено постоянное напряжение, и не зависит от тока, поэтому можно подобрать данные второй катушки и емкости для стабилизации питания в необходимых пределах.

Работа такого устройства сравнивается с качелями. Их трудно сразу остановить, или сделать скорость качания выше. Качели также не нужно постоянно подталкивать, так как инерция делает свое дело. Поэтому могут быть значительные падения и обрыв питания.

Инверторный

Схема такого прибора состоит:

  • Преобразователь напряжения.
  • Микроконтроллер.
  • Емкость.
  • Выпрямитель с регулятором мощности.
  • Фильтры входа.

Принцип работы инверторного стабилизатора заключается в протекании 2-х процессов:

  1. Вначале входное переменное напряжение изменяется в постоянное при прохождении по выпрямителю и корректору. При этом электроэнергия накапливается в емкостях.
  2. Далее постоянное напряжение изменяется в переменное на выходе. Из емкости ток течет к инвертору, трансформирующему ток в переменный с постоянными данными.

Принцип работы стабилизатора напряжения

В основе принципа работы стабилизаторов напряжения лежит использование трансформаторов, параметры которых поддаются корректировке. Трансформаторы представляют собой электромагнитные приборы, чье предназначение – трансформировать, т.е. изменять, в требуемых пределах характеристики переменного тока и напряжения. Простейшая разновидность этого аппарата представляет собой сердечник, на который намотаны две катушки (их называют также обмотками). Они автономны по отношению друг к другу. Источник переменного тока подсоединяется к первичной катушке. К вторичной подводят нагрузку, и здесь тоже возникает ток, однако его характеристики отличаются. Происходит это благодаря явлению электромагнитной индукции. Стабилизаторы напряжения изготавливают обычно с трансформаторами посложнее – автоматическими аппаратами с соединенными гальванически катушками.

Стабилизаторы напряжения нового поколения – это далеко не одни лишь автотрансформаторы. Ниже описано как работает стабилизатор напряжения и составные части его конструкции:

  • Элемент, обеспечивающий контроль. Это устройство отслеживает значение входного напряжения и отсылает на систему управления сигнал;
  • Управление. На сервопривод «бегунка» поступает напряжение, и он приходит в движение. В результате этого происходит переключение имеющегося между трансформаторными отводами соединения, и ток тоже меняет параметры. Электронные системы снабжены управляющими устройствами, которые переключают обмотки не опосредованно, а напрямую;
  • Элемент, ответственный за беспрерывную подачу электрического питания (By-Pass);
  • Защита основная, оберегающая от короткого замыкания и чрезмерно высокой нагрузки. В стабилизаторах она представлена магнитными и тепловыми расцепителями;
  • Защита дополнительная, предотвращающая, к примеру, последствия попадания молнии и других высоковольтных импульсов кратковременного воздействия.

Стабилизаторы напряжения относят (условно) к нескольким группам

Классификация по принципу действия:

  • Электронные. Эти же устройства называют ступенчатыми. В таких приборах изменение напряжения осуществляется дискретно, переключением обмоток трансформатора при помощи тиристоров или релейного блока. Для стабилизаторов данного типа характерно быстрое реагирование на перемену значений входного напряжения.
  • Электромеханические. К этой разновидности относят электродинамические приборы. Напряжение в них меняется плавно, для стабилизации характера высокая степень точности. Роднит их с представителями предыдущей группы та же стремительность реакции.
  • Феррорезонансные. Быстрота реагирования и точность этих аппаратов на высоте, напряжение меняется плавно. Основана работа таких стабилизаторов на принципе магнитного усилителя.

Классификация по способу подключения:

  • Однофазные. Их задача и возможности ограничиваются удержанием стабильного сетевого напряжения на значении 220В + 3%, если оно колеблется в диапазоне 150-250В. Объекты защиты подобных агрегатов – домашняя бытовая техника, разнообразная радио- и электроаппаратура, офисная оргтехника;
  • Трехфазные. Их миссия – стабилизировать напряжение в электросетях с напряжением 380 вольт. Такие аппараты востребованы в жилых домах и строениях промышленного назначения, где электропитание трехфазное.

Преимущества и слабые стороны

Для тиристорного или релейного (ступенчатого) стабилизатора напряжения характерны следующие показатели:

  • Корректировка осуществляется с высокой точностью;
  • КПД высок;
  • Входное напряжение может иметь достаточно большой диапазон;
  • Хорошая скорость срабатывания;
  • На холостом ходу прибор может работать;
  • Диапазон нагрузки велик, колеблется от 0% до 100%;
  • форма выходного напряжения остается неизменной, не искажается;
  • Стабилизатор дает возможность сделать пользование электроэнергией более дешевым;
  • Стабилизаторам, имеющим невысокую точность регулирования, свойственен такой изъян, как ступенчатость, а не равномерность трансформации напряжения на выходе. Такого недостатка лишены высокоточные агрегаты.

Работа электромеханического стабилизатора напряжения характеризуется следующими параметрами:

  • Перегрузочная способность на высоком уровне;
  • Регулировка производится с большой точностью;
  • Можно корректировать параметры в широком диапазоне;
  • Быстродействие оставляет желать лучшего (электрическим стабилизаторам уступает в 20 раз);
  • Чтобы рабочий ресурс оставался на высоте, аппарат нуждается в периодическом (раз в полгода) техобслуживании;
  • Не безопасен с точки зрения возникновения пожара;
  • Конструкцией предусмотрен незакрытый электрический контакт. Он скользящий (угольная щетка движется по поверхности медной обмотки), из-за чего изнашивание оказывается быстрым.

Принцип работы стабилизатора напряжения

Принцип работы релейного стабилизатора напряжения

Работа всех типов стабилизаторов переменного напряжения заключается в поддержании выходного напряжения на уровне 220 В при сильном изменении входного напряжения. Работа релейного стабилизатора основана на переключении обмоток трансформатора мощными реле. При таком переключении обмоток выходное напряжение меняется ступенями.

При переключении с одной обмотки на другую, выходное напряжение трансформатора изменится приблизительно на 20 В, или больше. Команду на переключение обмоток трансформатора поступает с контроллера на реле. Число переключаемых обмоток может меняться от 5 до 10, которое определяет точность стабилизации выходного напряжения. В большинстве релейные стабилизаторы работают при входном напряжении 150 — 250 В.

К положительным качествам релейных стабилизаторов можно отнести небольшое время срабатывания реле и невысокую стоимость. Недостатком таких стабилизаторов является скачок напряжения при переключении обмоток на 20 Вольт. На бытовых электроприборах это не отражается, однако лампы освещения могут моргать. Еще релейный стабилизатор издает щелчки при переключении реле, которые ночью хорошо слышны.

Скачки напряжения при переключении обмоток трансформатора

В момент переключения контакты реле на время зависают в воздухе. В это время, хотя и короткое, нагрузка отключена, что вызывает ЭДС самоиндукции автотрансформатора. Эта ЭДС выражается в коротком импульсе напряжения, которое может достичь 1000 В. Такие импульсные помехи могут вызвать повреждение техники, особенно при многократном переключении обмоток стабилизатора.

Схема работы релейного стабилизатора

В этой ситуации нужно после релейного стабилизатора ставить ограничители напряжения на варисторах. Обмотка большинства автотрансформаторов намотана алюминиевым проводом, который имеет меньшую нагрузочную способность, чем медный. Контакты реле, особенно при большой нагрузке, искрят и подгорают, что вызывает необходимость их чистки. Релейные стабилизаторы имеют право на существование как недорогой вариант при больших перепадах сетевого напряжения.

Принцип работы симисторных стабилизаторов

Работа симисторных стабилизаторов похожа на работу релейных устройств. Отличие составляет узел переключения обмоток трансформатора. Вместо реле у симисторных устройств переключение обмоток происходит мощными симисторами или тиристорами. Контроллер управляют работой симисторов.

Симисторное управление обмотками не имеет контактов, поэтому отсутствуют щелчки. Автотрансформатор намотан медным проводом. Эти стабилизаторы могут работать с пониженным напряжением от 90 В и высоким напряжением до 300 В. Точность регулировки напряжения может достичь 2%, что не вызывает моргание ламп.

Однако ЭДС самоиндукции во время переключения симисторами также имеет место, как и у релейных устройств. Так как симисторные ключи очень чувствительны к перегрузкам, им необходимо иметь запас по мощности. Такие устройства стабилизаторов напряжения имеют тяжелый температурный режим.

Читать еще:  Присадка для дизеля тнвд

Схема работы симисторного стабилизатора

Поэтому симисторы ставятся на радиаторы с принудительным охлаждением вентиляторами. Работа этого вида устройства осуществляется по заводской программе, которая имеет неприятность ошибаться при эксплуатации.

В этом случае поможет только заводской ремонт. Стоимость таких стабилизаторов, на мой взгляд, завышена. Существуют симисторные стабилизаторы марки Volter с высокой степенью точности. Принцип работы этих стабилизаторов напряжения осуществляется по двухступенчатой системе. Первая ступень регулирует выходное напряжение грубо, а вторая степень имеет точную регулировку выходного напряжения.

Схема работы двухступеньчатого стабилизатора Volter

Один контроллер управляет двумя ступенями. По сути это два стабилизатора в одном корпусе. Обмотки обеих ступеней намотаны на одном трансформаторе. При 12 ключах двух ступеней стабилизатор имеет 36 уровней регулировки выходного напряжения, чем и достигается высокая точность выходного напряжения.

Принцип работы сервопривода стабилизатора

Эти устройства относятся к самым простым стабилизаторам переменного напряжения. В устройстве стабилизатора напряжения главным элементом является тороидальный трансформатор с сервоприводом, который управляется не сложной электронной схемой сравнения выходного и входного напряжений.

При разнице этих напряжений, сигнал с положительной или отрицательной полярностью подается на сервопривод постоянного тока, который включаясь, поворачивает токосъемник с графитовой щеткой до тех пор, пока на выходе напряжение не станет равным 220 В. Токосъемник двигается по контактной площадке трансформатора захватывает одновременно несколько витков обмотки, поэтому напряжение регулируется без скачков.

Вид открытого стабилизатора с сервоприводом

Время отклика на изменение напряжения сервопривода выше, чем у релейного устройства. Положительным качеством сервопривода является хорошая точность установки 2 – 3%. На этом, наверное, заканчиваются все положительные качества сервопривода. У стабилизатора с сервоприводом есть один очень большой недостаток, о котором нигде не говориться. Это его пожароопасность.

Схема работы стабилизатора с сервоприводом

По его вине также выходят из строя все электробытовые приборы и техника. Причина проста. При падении сетевого напряжения ниже низкого порога или подъема напряжения выше высокого порога стабилизатора, сервопривод выводит токосъемную щетку в крайние положения и клинит. Это происходит из-за низкого качества китайских сервоприводов или схема управления сервоприводом не вытягивает токосъемник с крайних точек контактной площадки.

А теперь представьте, упало сетевое напряжение, токосъемник естественно пополз в верхнюю крайнюю точку, поднимая напряжение и заклинил. Вернуться не может. Когда напряжение восстановилось на входе стабилизатора, то выходное напряжение будет равным 300 В или больше. Бытовые приборы такое напряжение не выдерживают. Подобное не раз встречалось на моей практике. Поэтому при выборе стабилизатора переменного напряжения нужно учитывать его надежность и безопасность.

Выбор стабилизатора напряжения

Не секрет, что бытовая техника работает от электрического тока. Включая свой компьютер или телевизор в розетку, многие не задумываются о том, что же заставляет их работать. К сожалению, качество электрических сетей очень часто далеко от идеала. А ведь от правильного электроснабжения зависит работоспособность бытовых приборов. Поэтому многие рано или поздно задумываются о стабилизаторе напряжения.

Стабилизатор напряжения – это устройство, предназначенное для поддержания выходного напряжения в определенных (узких) пределах, при сильных изменениях входного напряжения.

Например, при 190В эффективность работы микроволновой печи ниже, чем при 220В. Для того чтобы привести напряжение питания к значениям близким к 220В, и используются стабилизаторы напряжения. Они работаю как при пониженном ( 220В) входном напряжении.

Внешний вид и габаритные размеры стабилизаторов различны. Вот лишь некоторые из них:

Если вы встали перед выбором стабилизатора напряжения, то попробуем разобраться, какие же они бывают и в чем их различия.

Первое на что необходимо обратить внимание – это тип питающей сети. Различают стабилизаторы:

– для однофазных электрических сетей (220В);

– для трехфазных электрических сетей (380В).

В большинстве частных домов и квартир смонтирована однофазная сеть.

Следующим определяющим параметром для выбора служит мощность стабилизатора. Необходимо определить какую технику вы хотите защитить (вы можете подключить к стабилизатору один или несколько потребителей), и определить его (их) мощность. Обычно эта характеристика указана в паспорте устройства или на одной из его стенок. При этом необходимо учитывать, что такие потребители как холодильники, насосы и т.п. при запуске потребляют мощность в несколько раз большую, чем при работе, и очень часто этот параметр не указан. Рассчитав мощность потребителей, можно узнать какой мощности потребуется стабилизатор, при этом желательно, чтобы мощность последнего была на 10-15% больше мощности нагрузки.

Мощность стабилизатора можно определить по его модели. В названии указываются числа – 1000, 5000 и т.д. Они означают полную мощность устройства и измеряются в ВА (вольт-ампер), в отличие от привычной нам активной мощности измеряемой в Вт. Величина активной мощности можно найти в инструкции, или на коробке от стабилизатора, так же возможно высчитать ее приблизительную величину умножив мощность в ВА на коэффициент 0,6.

Существует несколько различных видов стабилизаторов напряжения, различающихся схемотехникой.

1. Релейные стабилизаторы. Состоят из автотрансформатора с несколькими выводами, реле, и контроллера. Одной из отличительных особенностей данного типа, является ступенчатое изменение выходного напряжения.

В зависимости от напряжения на входе, выводы катушки переключаются с помощью реле, тем самым формируя нужное напряжение на выходе стабилизатора. Чем больше количество выводов у автотрансформатора (и реле соответственно), тем плавне осуществляется регулировка и точнее выходное напряжение.

· Высокий КПД – до 99%.

· Широкий диапазон стабилизации входного напряжения – от 100 до 290 Вольт.

· Высокая сопротивляемость перегрузкам – двукратная перегрузочная способность на время до 4 секунд.

· Недолговечность – в процессе работы реле, происходит их механический износ, и соответственно постепенное уменьшение ресурса.

· Вероятность обрыва – существует вероятность отгарания контактов реле.

· Высокие показатели погрешности – бывают погрешности на выходе вплоть до 15%.

· Шум при работе – переключение реле происходит с характерным щелчком.

· Не всегда подходит для ламп накаливания – при точности выходного напряжения более 3% регулировка выходного напряжения будет видна по изменяющейся яркости ламп.

2. Электронные ступенчатые (Симисторные/тиристорные). Аналогичны по устройству релейным аппаратам, с той лишь разницей, в регулировке напряжения вместо реле применяются симисторы/тиристоры.

· Быстродействие – реакция на изменение входного напряжения всего порядка 10мсек.

· Большой КДП – до 98%.

· Большой срок службы – это самые долговечный вид стабилизаторов напряжения. При соблюдении условий эксплуатации, прибор может прослужить до 10 лет.

· Выдерживает большие перегрузки – при 20% – 12 часов, при 100% – 1 минута.

· Цена – немного дороже релейных и электромеханических приборов.

· Не всегда подходит для ламп накаливания – при точности выходного напряжения более 3% регулировка выходного напряжения будет видна по изменяющейся яркости ламп.

3. Электромеханический (сервоприводный) стабилизатор. Характерной особенностью данного типа устройств является плавное регулирование выходного напряжения. Это достигается за счет того, что его регулировка производится электродвигателем с графитовой щеткой.

· Плавная регулировка напряжения.

· Высокая точность регулирования.

· Не искажает синусоиду выходного тока.

· Широкий диапазон входного напряжения – от 130 до 260 Вольт.

· Выдерживает большие перегрузки.

· Небольшой срок службы – ввиду наличия движущихся деталей в устройстве стабилизатора, и их физического износа.

· Ограниченность использования – рабочая температура прибора находится в пределах от -5 до +40°С. Выход за эти пределы приводит к неработоспособности стабилизатора.

· Шумность – при работе сервопривода создается характерный шум.

· Низкая скорость реакции на изменение входного напряжения – скорость передвижения щеток в приборе физически ограничена.

4. Стабилизаторы с двойным преобразованием. Принцип работы, и главная отличительная черта таких стабилизаторов – преобразование входного переменного тока в постоянный, с последующим преобразованием в выходной переменный.

· Надежность – стабильная работа как на минимальных, так и на максимальных нагрузка.

· Отсутствие помех – близкая к идеальной синусоидальная форма выходного тока.

· Большой срок службы – до 10-15 лет, в виду отсутствия движущихся частей.

· Низкий уровень шума.

· Широкий диапазон входного напряжения – от 120 до 300 В.

· Высокая скорость реакции на изменение входного напряжения.

· Низкий КПД – при 100% нагрузке всего около 90%.

5. Стабилизаторы с широтно-импульсной модуляцией (ШИМ).

Вся работа по преобразованию и стабилизации напряжения осуществляется полупроводниковыми компонентами.

· Высокая скорость реакции на изменение входного напряжения.

· Высокая точность корректировки.

· Плавное включение нагрузки. Стабилизатор данного вида можно применять, в том числе и для сварочного оборудования.

· Низкая чувствительность к качеству электропитания.

· Модельный ряд достаточно скромен – число моделей таких стабилизаторов гораздо меньше, чем например релейных.

· Сложность – использование большого числа компонентов снижает надежность устройства.

Перечислим, на какие характеристики стабилизатора стоит обратить внимание при покупке.

Диапазон входного напряжения. Определяет минимальное и максимальное значение входного напряжения, при котором стабилизатор выполняет свои функции. Важный показатель, поскольку, если прибор рассчитан на работу от 180В, а напряжение в вашей розетке часто опускается ниже этого значения, стабилизатор просто не будет работать.

Точность стабилизации. Характеризует отклонение выходного напряжения от заявленного в характеристиках.

Перегрузочная способность. Возможность стабилизатора выдерживать кратковременные нагрузки, превышающие его нормативную мощность.

Защита от перегрузки и короткого замыкания на выходе. В случае если мощность нагрузки будет больше мощности стабилизатора на 50-100% в течение большего времени (чем позволяет его перегрузочная способность), или в нагрузке произойдет резкое, ненормативное повышение силы тока (короткое замыкание), то стабилизатор отключается. Если стабилизатор оснащен функцией повторного включения, он снова включится через определенное время. Если перегрузка на выходе отсутствует, стабилизатор продолжит свою работу. Если же нет, то прибор отключится снова, и включится только после устранения причины перегрузки.

Контроль выходного напряжения. При выходе из строя стабилизатора, и/или увеличении выходного напряжения выше допустимых границ, устройство отключает потребителей, для предотвращения их повреждения.

Возобновление работы после возвращения входного напряжения в рабочие пределы. Как ясно из названия, данная функция позволяет стабилизатору возобновлять свою работу, если напряжение на входе возвращается в рабочий диапазон прибора, после выхода из него (превышения или чрезмерного понижения).

Выбор номинала выходного напряжения. Существуют модели позволяющие устанавливать напряжение на выходе стабилизатора (например, 220/230/240В).

Температурный диапазон работы. Температура в помещении, где будет использоваться стабилизатор, должна соответствовать температурному диапазону работы стабилизатора. В противном случае устройство может выйти из строя, или существенно сократиться срок его службы.

Тип и количество розеток. От количества розеток зависит то количество техники, которое можно подключить к стабилизатору, без использования различных разветвителей (их использование крайне не рекомендуется). Тип розеток, напрямую определяет разъем питания потребителей. При несоответствии типов разъемов стабилизатора и подключаемой техники, потребуется покупка специальных переходников.

Читать еще:  Кадиллак стс 2017

Стандартные типы розеток стабилизаторов:

– CEE 7 (евророзетка) – самый распространенный тип.

– C13 – наиболее часто встречается в ИБП. На стабилизаторах, в основном, идет совместно с CEE 7. Устройства, оборудованные только розетками С13, слабо распространены.

– Клеммы – используются на приборах, ориентированных в большей степени на стационарную установку. Клеммы могут находиться как внутри, так и снаружи прибора.

Задержка запуска. Возможность установить время, через которое происходит возобновление подачи питания на выходе устройства. Стабилизаторы без этой функции, возобновляют питание потребителей сразу после установления входного напряжения в рабочих пределах. Задержка запуска полезна в случае таких потребителей как холодильник или насос, поскольку частые отключения – включения негативно влияют на их работоспособность.

Жк дисплей. Используется для вывода информации о работе устройства. Например, о номинале входного или выходного напряжения.

Что же касается ценового позиционирования, то стабилизаторы:

– до 1000ВА, обойдутся вам от 1199 до 3799 рублей, подойдут для подключения телевизора или компьютера в средней конфигурации;

– от 1000 до 3000ВА, стоят от 1499 до 12090 рублей. Такие приборы способны питать потребителей в виде «домашних» холодильников или кондиционеров, или несколько приборов, с более низким потреблением, одновременно;

– от 3000 до 5000ВА, от 2599 до 13350 рублей, в этой группе уже появляются стабилизаторы для трехфазных сетей, а также модели полупромышленного назначения;

– от 5000ВА, от 6299 до 43390 рублей, модели повышенной мощности, предназначенные как для бытового, так и для промышленного использования, из-за наличия различных дополнительных механизмов защиты и фильтрации напряжения. В силу большой мощности, габаритные размеры и масса таких приборов достаточно велики.

Разброс цен в категориях обусловлен различными характеристиками выпускаемых моделей. Так более дорогие модели могут похвастаться, более высокими значениями кпд, активной мощности, стабильности выходного напряжения, большим диапазоном входного напряжения, функциями задержки запуска и встроенными фильтрами от различных помех.

Что такое стабилизатор переменного напряжения, зачем он нужен, основные типы

В данной статье рассмотрим что такое стабилизатор переменного напряжения, случаи его применения, особенности основных типов.

Не будет преувеличением сказать, что применение стабилизаторов сетевого напряжения стало необходимостью для каждого дома. И связано это не только с качеством поставляемой в наши дома и квартиры электроэнергией, но и с появлением сложной бытовой техники с электронным управлением, требовательной к качеству питающего напряжения.

Развитие технологий не обошло стороной и производителей стабилизаторов напряжения. Ведущие бренды уже несколько лет назад начали выпускать устройства нового инверторного типа, использующие схему двойного преобразования напряжения. Инверторные стабилизаторы, благодаря применению в них микропроцессорных чипов и электронных ключей, превосходят ранние трансформаторные модели по техническим характеристикам, функциональным возможностям и эффективности работы. Подробнее о достоинствах и недостатках разных типов стабилизаторов читайте в конце статьи.

Что такое стабилизатор переменного напряжения?

Стабилизатор переменного напряжения – это преобразующее устройство, главным назначением которого является защита электроприборов (например, холодильника, телевизора, стиральной, машинки, сплит-системы) от воздействий колебаний и скачков напряжения в питающей сети, способных привести их к поломке и выходу из строя.

Первые стабилизаторы появились в середине прошлого века. Это были устройства электромагнитного типа, работа которых основана на явлении электромагнитной индукции – возникновении электрического тока в замкнутом контуре автотрансформатора. Они не отличались высокими значениями таких показателей эффективности работы как точность стабилизации напряжения, скорость реагирования на его изменение в сети, КПД, перегрузочная способность. К тому же, даже маломощные устройства тех времен были громоздкими и тяжёлыми.

Во многих современных автоматических регуляторах напряжения (AVR – Automatic Voltage Regulator) в качестве устройства преобразования до сих пор применяется автотрансформатор. В наиболее продвинутых инверторных устройствах нового поколения используется технология двойного, бестрансформаторного преобразования электроэнергии.

В зависимости от типа напряжения питающей сети, на которую рассчитаны стабилизаторы, существуют однофазные, трехфазные и устройства, имеющие конфигурацию 3:1 («три в один»). Первые применяются только для стабилизации питания однофазных электроприборов. Трехфазные стабилизаторы предназначены для работы в трехфазных сетях для питания оборудования, рассчитанного на 380 В, но при пофазном распределении нагрузки могут быть использованы и для питания однофазных электроприборов.

Отличительной особенностью устройств конфигурации 3:1 является возможность работы в цепях с разным типом напряжения: входное напряжение трехфазное, а на выходе стабилизатора – однофазное. Их применение предпочтительно для подключения однофазных нагрузок большой мощности – это обеспечит равномерность распределения токов потребления по всем трем фазам, исключив возможность возникновения перекоса фаз.

По принципу построения защиты стабилизаторы переменного напряжения могут быть локального типа (для индивидуального подключения отдельных электроприборов) и магистрального типа, рассчитанные на подключение всей имеющейся нагрузки в помещении. Первые – это, как правило, устройства небольшой мощности для установки по месту расположения электроприбора, подключение к входной сети и нагрузке которых выполняется при помощи штепсельных соединений (вилка-розетка). В более мощных магистральных стабилизаторах (обычно, это устройства мощностью свыше 4000 ВА) для подключения предусматривается клеммная колодка.

Назначение и функции стабилизаторов сетевого напряжения

Любое электрическое устройство, бытовой электроприбор или оборудование промышленного назначения, рассчитаны на подключение к сети переменного тока со стандартным (номинальным) значением напряжения. Эффективность и безопасность эксплуатации устройства гарантируется производителем при условии его работы в заявленном диапазоне рабочего напряжения.

Многим читателям, наверняка, приходилось сталкиваться с низким качеством электропитания: повышенным или пониженным значением напряжения питающей сети, его нестабильностью, а также искаженной формой сигнала и наличием импульсных (коммутационных) и высокочастотных помех. Это обусловлено ненадлежащим техническим состоянием сетей, их износом или несоответствием мощности устаревшего на сегодня оборудования систем электроснабжения фактическим объемам потребления электроэнергии. К сожалению, отклонения напряжения от нормы, нестабильность его значения – нередкие явления не только в сельских или дачных, но и в городских электрических сетях.

Эксплуатация бытовых электроприборов или промышленного электрооборудования в сетях с низким качеством электроэнергии может привести не только к их поломкам с последующим дорогостоящим ремонтом, но и к полному выходу из строя.

Эффективным решением организации качественного электропитания нагрузки в быту и на производстве является применение стабилизаторов напряжения. Основным назначением этих устройств является коррекция и постоянное поддержание требуемого уровня напряжения на выходе как при изменении его значения в питающей электросети, так и при возможном изменении тока нагрузки.

Многие современные стабилизаторы переменного напряжения также имеют ряд дополнительных функций:

  • коррекция формы сигнала напряжения на выходе;
  • защита от перегрева и коротких замыканий в цепи питания нагрузки;
  • защитное отключение устройства при недопустимых значениях напряжения входа (требуемый порог по верхней и нижней границе может быть задана пользователем самостоятельно);
  • подавление ВЧ- и импульсных помех выходным фильтром;
  • возможность задать требуемые значения выходного напряжения, отличные от стандартных;
  • возможность реализации мониторинга параметров и дистанционного управления стабилизатором.

Необходимо также отметить, что коррекция и стабилизация электропитания могут быть востребованы не только в случаях серьезных отклонений напряжения от нормы или при недопустимых колебаниях его значений. В соответствии с действующим в РФ ГОСТом 13109-97, определяющим качество электроэнергии, допустимые отклонения нормального напряжения в сети составляют ±10% от номинального значения. Таким образом, фазное напряжение в диапазоне 198–242 В, согласно данному стандарту, считается нормальным.

Действительно, такое напряжение обеспечит нормальную работу большинства электроприборов. Однако, для питания чувствительной к напряжению техники во избежание сбоев и ошибок в работе рекомендуется использование стабилизаторов. Так, скажем, для питания современных газовых котлов с электронным управлением установка стабилизатора сетевого напряжения точно не будет лишней. То же самое можно сказать относительно чувствительных к питанию электроприборов, изготовленных в странах с более жесткими требованиями стандартов качества электроэнергии.

Основные типы стабилизаторов переменного напряжения

В зависимости от принципа работы существуют следующие типы стабилизаторов:

  • феррорезонансные;
  • электромеханические (сервоприводные);
  • релейные;
  • электронные (полупроводниковые);
  • инверторные.

Далее кратко рассмотрены их основные отличия. Для получения более детальной информации рекомендуем ознакомиться со статьей о видах стабилизаторов напряжения

Феррорезонансные. В основе преобразование напряжения лежит явление электромагнитного феррорезонанса – магнитного насыщения ферромагнитных сердечников дросселей. Благодаря статичности и простоте своей конструкции эти устройства отличаются высокими показателями безотказности и долговечности эксплуатации.

Небольшое их распространение в применении в наше время обусловлено такими недостатками как низкий КПД, модифицированность синусоиды на выходе, шум в работе, довольно узкий диапазон рабочих напряжений сети.

Электромеханические. Альтернативное название – сервоприводные, так как в их устройстве имеется сервопривод, обеспечивающий перемещение токосъемных щеток, снимающих вторичное напряжения с витков обмотки автотрансформатора. Наличие вращающихся и движущихся деталей в стабилизаторах представляет определенную уязвимость их конструкции: эксплуатация связана с частым износом деталей, расходных материалов и необходимостью регулярного технического обслуживания.

Имея неплохие технические характеристики и находясь в нижней ценовой категории, устройства востребованы как бюджетное решение задач защиты нетребовательного к питанию оборудования.

Релейные. По принципу преобразования напряжения могут быть отнесены к аналогам сервоприводных устройств. Разница между ними заключается в способе передачи вторичного напряжения с автотрансформатора. Коммутация осуществляется не токосъемными щетками с витков трансформатора, а силовыми реле, установленными на отпайках его обмотки.

Как и электромеханические, релейные устройства относятся к бюджетной категории стабилизаторов. Выигрывая в быстродействии и имея большую износостойкость, они уступают сервоприводным в точности и плавности коррекции напряжения.

Электронные. Отличаются от релейных полным отсутствием механических деталей. Коммутация выходного напряжения осуществляется полупроводниковыми силовыми ключами – тиристорами или симисторами. Главным преимуществом этих более совершенных устройств является высокое быстродействие. К сожалению, ступенчатость коррекции существенно снижает точность стабилизации напряжения.

Инверторные. На сегодняшний день этот тип стабилизаторов по праву считается наиболее «продвинутым». Упрощенно, не вдаваясь в технические подробности работу инверторного стабилизатора можно описать как преобразование выпрямителем переменного напряжение в постоянное с последующим преобразованием в стабилизированное переменное синусоидальное выходное переменное.

Преимуществом стабилизаторов с двойным преобразованием, даже при использовании их в сетях с низким качеством электроэнергии, безусловно, является неизменное качество выходного напряжения как по точности приближения к номинальному значению и стабильности, так и по быстродействию и форме сигнала (идеальная синусоида).

Не будет преувеличением назвать инверторные стабилизаторы универсальными источниками питания для любой, даже особо требовательной к качеству напряжения нагрузки.

Инверторные стабилизаторы напряжения «Штиль»

Релейный стабилизатор напряжения | Устройство и принцип действия

Релейный стабилизатор напряжения – это самый распространенный и доступный тип стабилизаторов, давайте разберемся что он из себя представляет, как устроен, какие имеет достоинства и недостатки, в каких случаях просто незаменим и рекомендован к покупке.

Что значит релейный стабилизатор напряжения

Одними из важнейших элементов любого релейного стабилизатора являются – силовые реле, это именно то, чем они отличаются от нормализаторов других типов, от сюда и название – релейные, они относятся к электронным стабилизаторам.

Читать еще:  Как разобрать радиатор охлаждения двигателя

Давайте рассмотрим подробнее, как устроен релейный стабилизатор, из чего он состоит и как при этом задействованы реле.

Устройство релейного стабилизатора напряжения

Сердцем любого релейного стабилизатора является обычный автотрансформатор , мы уже достаточно подробно писали о нём, перейдя по ссылке вы сможете узнать, что он из себя представляет и как работает.

Сейчас же стоит сказать, что автотрансформатор имеет несколько отпаек – отводов от обмотки, каждый из которых формирует вторичную обмотку, с разным коэффициентом трансформации входящего напряжения. Таким образом напряжение может увеличиваться или уменьшаться, а как это работает мы рассмотрим ниже.

Кроме автоматического трансформатора еще одной важной частью любого релейного стабилизатора является – плата управления. Она содержит ряд компонентов и решений, в частности вольтметр, измеряющий входящее напряжение и цепи управления, которые отвечают за переключение режимов стабилизатора.

Непосредственно коммутацией соответствующих отводов вторичной обмотки автотрансформатора с выходными контактами стабилизатора занимаются силовые реле.

Реле – это своего рода автоматический выключатель, по сигналу оно механически замыкает или размыкает электрическую цепь. В зависимости от модели прибора, количество таких реле – ступеней стабилизации, как и их тип, может различаться.

Кроме вышеперечисленного, любой электронный релейный стабилизатор так же имеет на борту предохранители, индикаторы и другие компоненты., но их мы описывать не будем, их тип и количество может сильно различаться в зависимости от модели конкретного устройства.

Сейчас же, для лучшего понимания того, как он работает, давайте рассмотрим его схему.

СХЕМА РЕЛЕЙНОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Как видите, на схеме отражены все значимые элементы релейного стабилизатора описанные выше и способ их взаимодействия. Это плата управления, измеряющая входящее напряжение и управляющая работой реле, автотрансформатор и сами силовые реле.

Принцип действия релейного стабилизатора напряжения

В первую очередь, в стабилизаторе замеряется входящее напряжение, далее, в зависимости от полученных результатов, с платы управления посылается сигнал на открытие того или иного реле, соответственно электрический ток с одной из отпаек автотрансформатора, уменьшенный или увеличенный до нужного значения, поступает на выводы стабилизатора, к потребителю.

Для полного понимания принципа действия релейного стабилизатора, вы обязательно должны знать о работе автотрансформатора и его устройстве, если еще не прочли нашу статью о нём – сейчас самое время это сделать, перейдя по ссылке.

В качестве примера работы стабилизатора, давайте примем, что каждый отвод автотрансформатора даёт +/- 15 Вольт изменения напряжения, работает это следующим образом:

– Если напряжение в сети 220В – оно сразу передаётся к потребителю, коэффициент трансформации при этом 1. Соответственно в пределах от 205В до 235В (220В +/-15В), напряжение на выход стабилизатора, будет передаваться без изменений.

– Как только входящее напряжение опускается до значения, меньшего чем 205 Вольт, задействуется первая вторичная обмотка автотрансформатора, с коэффициентом трансформации 1,075, тем самым на выходе снова получается 220 В (205*1,075). В этот момент отвечающее за этот отвод автотрансформатора рале замыкается, пуская ток на выходные контакты стабилизатора, а все другие размыкаются.

Далее, пока напряжение не упадет еще на 15В т.е. до 190В (205В-15В), будет продолжать действовать эта вторичная обмотка с тем же коэффициентом трансформации, таким образом, если в сети напряжение упадет до 196В (граница переключения на следующий режим), на выходе получается 211В (196*1,075).

– Когда входящее напряжение опускается ниже 190В, срабатывает очередное реле, а предыдущее размыкается, тем самым включается следующая вторичная обмотка автоматического трансформатора, с коэффициентом трансформации уже 1,15 и напряжение на выходе опять становится 220В (196*1.15) и так далее, каждые 15В переключается обмотка до, допустим, 145В – после чего стабилизатор уходит в защиту.

Если же наоборот, напряжение в сети возрастает выше 235В, с помощью соответствующего реле задействуется понижающая вторичная обмотка, с коэффициентом трансформации 0,94 и опять же напряжение в сети выравнивается до требуемых 220В (235*0,94).

Думаю, теперь, принцип действия релейного стабилизатора вам понятен, теперь давайте рассмотрим какие у стабилизатора этого типа сильные и слабые стороны, в каких сферах его лучше всего применять.

Плюсы и минусы релейных стабилизаторов

Достоинства

Низкая стоимость

Именно благодаря своей низкой цене, относительно стабилизаторов других типов, релейные модели так популярны. При этом, по остальным параметрам, они полностью перекрывают потребности современного потребителя в большинстве случаев.

Достаточно быстрая скорость стабилизации, в среднем 5-30 мс

Релейные стабилизаторы с высокой скоростью реагируют на изменения входящего напряжения, и позволяют защитить ваше электрооборудование даже при резком падении или скачках

Простота и ремонтопригодность

Обладая простой, понятной архитектурой, релейные стабилизаторы не имеют массы сложных компонентов, которые могли бы выйти из строя. Возможных неполадок не так много и все они изучены и описаны, легко диагностируются и могут быть исправлены в домашних условиях, даже при наличии лишь поверхностных знаний и навыков в ремонте электротехники.

Недостатки

При частом переключении, выходят из строя силовые реле

Одним из самых значимых недостатков релейных стабилизаторов, на мой взгляд, является возможность выхода из строя силовых реле, если переключения режимов происходят достаточно часто и интенсивно. Контакты со временем окисляются или могут подгорать на высоких токах, что сильно сокращает срок службы реле.

Щелкают при переключении реле

Еще особенность одна особенность, которая может стать серьезным недостатком, если релейный стабилизатор установлен где-то рядом с вами, является звук переключения реле, которые достаточно звонко щелкают.

Относительно высокая погрешность стабилизации, в среднем порядка 5-8%

В зависимости от количества отводов от автотрансформатора – вторичных обмоток и соответственно количества реле в схеме, релейный стабилизатор имеет степень погрешности стабилизации, в среднем 5-8%, а это достаточно много. Как вы могли видеть из представленных выше расчетов, ступени, при которых происходит стабилизация находятся в пределах 15 Вольт, что равняется 6,8% от 220В, особо чувствительные электроприборы могут реагировать и на такие показатели.

Если вам требуется нормализация с большей точностью, обязательно рассмотретие электромеханические стабилизаторы напряжения.

Кратковременный обрыв подачи тока в момент переключения реле

При переключении реле, во время смены режимов, на некоторое очень короткое время, происходит обрыв подачи тока, когда контакты одного реле уже разорваны, а второго только-только замыкаются. При это нередко также происходит всплеск, скачок напряжения. Это может негативно влиять на особо чувствительные электронные компоненты, а также выражаться, например, в кратковременном изменении яркости ламп.

Падение мощности при низком напряжении

Полную, заявленную производителем мощность, релейные стабилизаторы выдают лишь в достаточно узком диапазоне входящих напряжений, нередко лишь до 190 Вольт, затем производительность стремительно падает и в какой-то момент достигает лишь 40-50% от номинальной.

Где используют релейные стабилизаторы

Если проанализировать все плюсы и минусы релейного стабилизатора, можно сделать вывод, что он сможет справится с большинством бытовых задач. Практически везде, где не требуется точности стабилизации, но при этом нужна высокая скорость – релейный стабилизатор просто незаменим.

В частности, релейные стабилизаторы активно приобретают для выравнивания напряжения в квартире или на даче, а также в гараже. Кроме того, практически любая бытовая техника, в которой есть мотор или нагревательный элемент, например, холодильник , стиральная или посудомоечная машина, электроинструмент прекрасно работают с недорогими и быстрыми релейными стабилизаторами.

Когда падения или наоборот скачки напряжения происходят не очень часто, но всё же случаются в течении дня, например, в садоводческом товариществе, где напряжение в сети, нередко, сильно зависит от того, что делают ваши соседи в данный момент, зависимости от этого оно может стремительно меняться, релейный стабилизатор оптимальное решение.

Если же у вас есть какое-то чувствительное даже к малейшим скачкам напряжения или параметрам электрического тока, а также к точности стабилизации оборудование, например, высококачественный усилитель звука, вам следует выбрать нормализатор другого типа.

Лучшие релейные стабилизаторы напряжения

В настоящее время на рынке стабилизаторов есть достаточно много игроков, больших и не очень фирм производителей, у каждой при этом есть несколько линеек моделей, с разной выходной мощностью и функциями, поэтому назвать какие-то определенные удачные продукты непросто.

Но конечно же, изучая опыт и отзывы своих коллег, поставщиков и клиентов, можно выделить несколько наиболее оптимальных производителей в различных категориях потребительских свойств, на примере моделей на 5 кВт – кВА в частности:

НАЧАЛЬНЫЙ УРОВНЬ

Из самых доступных, недорогих, но при этом достаточно качественных релейных стабилизаторов напряжения советую присмотреться к моделям следующих производителей: Ресанта Quattro Elementi. Особенно удачно эти стабилизаторы применяются на даче, садовом участке или в гараже, а также при питании бытовой техники или электроинструмента.

Стабилизаторы этих производителей нередко ставят в квартирах и коттеджах, котельных и других местах, где важна надежность, как стабилизации, так и защиты электроприборов от негативных влияний некачественных параметров электрического тока.

Недорогой и качественный релейный стабилизатор РЕСАНТА ACH-5000/1-Ц (

Quattro elementi stabilia 5000 – Еще один доступный релейный стабилизатор с хорошими отзывами (

ЦЕНА / КАЧЕСТВО

По сочетанию цена/качество, с упором на надежность, качество и функции, вроде более широкого диапазона стабилизации, доп.защиты и фильтров, наиболее интересными производителями релейных стабилизаторов, по мнению большого числа потребителей, являются: Энергия и Rucelf следующих моделей:

Одна из самых удачных моделей релейных стабилизаторов, сочетает в себе доступную стоимость и высокую надежность RUCELF СтАР-5000 (6500 рублей)

Энергия ACH 5000 – релейный стабилизатор Российского производства, в компактном, переносном исполнени, 7 ступеней стабилизации. (

ПРОДВИНУТЫЕ МОДЕЛИ

Наиболее дорогие и продвинутые релейные стабилизаторы, обладающие максимальным количеством опций, высокой степенью стабилизации и другими характеристиками высокого уровня, которые рассчитаны на установку в более ответственные, требовательные к качеству, надежности и точности параметров напряжения места, например, на производстве, в кафе, магазине и т.д. выпускают производители: Lider, Энергия, Uniel

Энергия Voltron 5000 – профессиональный высококачественный релейный стабилизатор напряжения, с очень хорошими характеристиками и дополнительными функциями. (

Uniel-rs-1-5000ls – релейный стабилизатор с широчайшим диапазоном стабилизации, высокой скоростью реагирования, по своим характеристикам сравнивается с . (

Если же вы знаете других достойных производителей или удачные модели релейных стабилизаторов – обязательно пишите в комментариях к статье. Кроме того, задавайте вопросы, а если есть замечания или критика – высказывайте.

Считаете, что релейный прибор не то, что вы ищите, обязательно изучите особенности стабилизаторов другого типа и читайте обзоры моделей для разных типовых случаев, всё это и многое другое ждёт вас в ближайших статьях, следите за выходом новых материалов, подписывайтесь на нашу группу ВКонтакте.

Ссылка на основную публикацию
×
×
Adblock
detector