Кинематическая схема сцепления
Autoservice-ryazan.ru

Автомобильный портал

Кинематическая схема сцепления

zykys › Блог › Принцип работы сцепления

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

В зависимости от конструкции различают следующие типы сцепления:

✔фрикционное сцепление;
✔гидравлическое сцепление;
✔электромагнитное сцепление.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление. Различает следующие виды фрикционного сцепления:

✔однодисковое сцепление;
✔двухдисковое сцепление;
✔многодисковое сцепление.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Однодисковое сцепление имеет следующее устройство:

✔маховик;
✔картер сцепления;
✔нажимной диск;
✔ведомый диск;
✔диафрагменная пружина;
✔подшипник выключения сцепления;
✔муфта выключения;
✔вилка сцепления.

Схема однодискового сцепления

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

Схема двухдискового сцепления

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.
Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

Сцепление и его виды в автомобиле

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

В зависимости от конструкции различают следующие типы сцепления:

• фрикционное сцепление;
• гидравлическое сцепление;
• электромагнитное сцепление.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление. Различает следующие виды фрикционного сцепления:

• однодисковое сцепление;
• двухдисковое сцепление;
• многодисковое сцепление.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Однодисковое сцепление имеет следующее устройство:

• маховик;
• картер сцепления;
• нажимной диск;
• ведомый диск;
• диафрагменная пружина;
• подшипник выключения сцепления;
• муфта выключения;
• вилка сцепления.

Схема однодискового сцепления

Схема сцепления

1. Корпус;
2. Тангенциальная пружина;
3. Опорный подшипник;
4. Коленчатый вал;
5. Демпферная пружина;
6. Ведомый диск;
7. Нажимной диск;
8. Маховик;
9. Корзина сцепления;
10. Кольцо;
11. Распорный болт;
12. Диафрагменная пружина;
13. Выжимной подшипник;
14. Направляющая;
15. Первичный вал коробки передач;
16. Вилка выключения сцепления;
17. Рабочий цилиндр

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

Схема двухдискового сцепления

Схема двухдискового сцепления

  1. Крышка корпуса
  2. Двухмассовый маховик
  3. Приводная пластина
  4. Ведомый диск 2 с демпферными пружинами
  5. Проставка
  6. Ведомый диск 1
  7. Нажимной диск
  8. Сенсорная пружина
  9. Регулировочное кольцо
  10. Диафрагменная пружина
Читать еще:  Как правильно высверлить сломанный болт

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.

Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

Сцепление автомобиля: назначение и устройство

Назначение и устройство сцепления

Сцепление служит для кратковременного разъединения двигателя от трансмиссии и плавного их соединения при трогании с места, а также при переключении передач. Сцепление состоит из привода и механизма сцепления.

Устройство сцепления автомобиля

Схема гидравлического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал;
  2. маховик;
  3. ведомый диск;
  4. нажимной диск;
  5. кожух сцепления;
  6. нажимные пружины;
  7. отжимные рычаги;
  8. нажимной подшипник;
  9. вилка выключения сцепления;
  10. рабочий цилиндр;
  11. трубопровод;
  12. главный цилиндр;
  13. педаль сцепления;
  14. картер сцепления;
  15. шестерня первичного вала;
  16. картер коробки передач;
  17. первичный вал коробки передач.

Привод выключения сцепления

Привод выключения сцепления (гидравлического типа) состоит из:

  • педали,
  • главного цилиндра,
  • рабочего цилиндра,
  • вилки выключения сцепления,
  • нажимного подшипника,
  • трубопроводов.

При нажатии на педаль сцепления, усилие ноги водителя, через шток и поршень, передается жидкости, которая, в свою очередь, передает давление от поршня главного цилиндра на поршень рабочего. Далее шток рабочего цилиндра перемещает
вилку выключения сцепления и нажимной подшипник, который и передает усилие на механизм сцепления. Когда же водитель отпустит педаль, то под воздействием возвратных пружин все детали привода займут исходные позиции.

Механизм сцепления

Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Именно механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем вновь
плавно их соединять.

Кроме того, сцепление предохраняет детали трансмиссии от перегрузок. При неравномерном вращении коленчатого вала двигателя в трансмиссии возникают колебания. Для их гашения в сцеплении имеется гаситель колебаний или демпфер. Элементы механизма заключены в картер сцепления, который крепится к картеру двигателя.

Детали механизма сцепления

Механизм сцепления состоит из:

  • картера и кожуха,
  • ведущего диска (которым является маховик коленчатого вала двигателя),
  • нажимного диска с пружинами,
  • ведомого диска со специальными износостойкими накладками и гасителем колебаний.

Ведомый диск, связанный с первичным валом коробки передач, постоянно прижат к маховику нажимным диском под воздействием очень сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе, как единое целое, вращается при работе двигателя. Но это только тогда, когда водитель не трогает педаль сцепления, независимо от того едет ли или стоит на месте его автомобиль.

А для начала движения машины, необходимо прижать ведомый диск, связанный с ведущими колесами (через первичный вал коробки передач и другие составляющие трансмиссии), к вращающемуся маховику, то есть – включить сцепление.

Схема работы сцепления

Как правильно включать сцепление? Вначале приотпускаем педаль, то есть даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения. За счет сил трения диск, проскальзывая некоторое
время относительно маховика, тоже начнет вращаться, а ваш автомобиль потихоньку двигаться. Затем на две – три секунды удерживаем педаль сцепления в средней позиции для того, чтобы скорость вращения маховика и диска уравнялись.

Машина при этом немного увеличивает скорость движения. И, наконец, когда маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания с одинаковой скоростью, 100%-но передавая крутящий момент к коробке передач
и далее на ведущие колеса автомобиля, остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если при начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет. В худшем же варианте, что-нибудь еще и сломается, так как в этот момент возникает сильная ударная волна, которая многократно увеличивает нагрузки на все детали двигателя и агрегаты трансмиссии.

Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.

Основные неисправности сцепления

Сцепление «ведет» (выключается не полностью) из-за большого свободного хода педали сцепления, перекоса нажимного подшипника, коробления ведомого диска или поломки пружин. Для устранения неисправности следует отрегулировать свободный ход педали, удалить воздух из гидропривода, заменить неработоспособные диски и пружины.

Сцепление «пробуксовывает» (включается не полностью) из-за малого свободного хода педали, замасливания или износа фрикционных накладок ведомого диска, поломки пружин. Для устранения неисправности необходимо отрегулировать свободный ход педали, промыть или поменять диски, пружины.

Сцепление включается резко вследствие заеданий в механизме привода, задирах на рабочих поверхностях дисков, маховика и разрушения фрикционных накладок ведомого диска. Для устранения неисправности следует заменить неисправные узлы привода, устранить задиры на поверхностях дисков, заменить ведомый диск.

Подтекание тормозной жидкости в приводе выключения сцепления возможно из главного или рабочего цилиндров, а также в соединительных трубках.
Для устранения неисправности следует визуально определить место утечки и заменить неисправные узлы, с последующей прокачкой всего гидропривода (удалить из него воздух).

Эксплуатация сцепления

При эксплуатации автомобиля необходимо периодически проверять уровень в бачке, питающем жидкостью гидравлический привод сцепления. Если уровень окажется меньше нормы, то его обязательно следует восстановить, долив тормозной жидкости.
В противном случае, когда ее уровень понизится до нуля, усилие вашей ноги на педали сцепления будет передаваться в никуда.

Пониженный уровень жидкости или неправильная регулировка сцепления может привести к тому, что передачи на вашем автомобиле будут включаться с огромным усилием или вообще включаться не будут. И если, при полностью нажатой педали
сцепления, вам все-таки удастся «впихнуть» первую передачу, то автомобиль самопроизвольно начнет медленное движение, хотя в данный момент двигатель еще должен быть отделен от ведущих колес.

Как это может случиться и почему машина едет?

Описанная неприятность называется – сцепление ведет. Суть происходящего в следующем. В то время, когда ведомый диск сцепления не должен иметь контакта с маховиком, он все-таки за него немного цепляется, и поэтому часть крутящего момента передается на вал коробки передач и далее на ведущие колеса.

Со сцеплением может случиться неприятность и другого рода. Так как каждый раз, отпуская педаль сцепления, мы заставляем обе поверхности ведомого диска сильно тереться о железный маховик и не менее железный нажимной диск, то естественно боковые поверхности ведомого диска со временем изнашиваются.

Это нормальный процесс, предусмотренный конструкцией автомобиля, и ведомый диск является расходным материалом. Однако наступает момент, когда и первая передача включена, и педаль сцепления наверху, и «газуете» вы так, что у проезжающих мимо водителей «сердце кровью обливается». Но износ накладок ведомого диска уже настолько велик, что теперь он не зажимается между маховиком и нажимным диском с должным усилием, и, прокручиваясь, не передает крутящий момент от двигателя к трансмиссии. Описанное явление называется – сцепление пробуксовывает.

Конечно, здесь описан пример совсем уж глухого и слепого водителя, потому что машина намного раньше «предупреждала» его о том, что такой случай может произойти в ближайшее время. Еще раньше, на подходе к максимальному износу, ведомый диск начал пробуксовывать, сначала на четвертой передаче, затем на третьей и так далее.

Начало критического износа легко определить, двигаясь на четвертой передаче со скоростью 40 – 45 км/ч. Если при активном нажатии на педаль газа обороты
двигателя начинают увеличиваться, а машина продолжает движение с постоянной скоростью, то в подтверждение своей догадки вы еще и унюхаете специфический запах «подгорающих» накладок диска. Значит, пора покупать новый диск.

«Шелест» в районе сцепления и его пропадание при полностью нажатой педали сцепления означает, что вы должны готовится к замене выжимного подшипника. Резкие старты и ускорения машины, постоянное держание ноги на педали сцепления при
движении ведут к ускоренному износу не только сцепления, но и других агрегатов автомобиля.

Укорачивает срок службы сцепления и еще одна плохая привычка. Это когда водитель долго удерживает педаль сцепления в нажатом состоянии, например, на все время остановки перед красным сигналом светофора.

Читать еще:  Плохо заряжается аккумулятор

Устройство автомобилей

Ступенчатые трансмиссии

Сцепление

Сцепление является элементом трансмиссии, непосредственно передающим крутящий момент от двигателя к последующим элементам трансмиссии посредством сил трения. Как правило, конструкция сцепления предусматривает кратковременное разъединение трансмиссии от двигателя.

Крутящий момент, принимаемый от двигателя, в сцеплении не преобразуется, но при проскальзывании ведущих и ведомых элементов происходят потери энергии двигателя на трение и нагрев деталей сцепления, т. е. снижается общий КПД трансмиссии.

В механической трансмиссии сцепление обеспечивает плавное трогание автомобиля, безударное переключение передач, предотвращает воздействие на двигатель и на трансмиссию больших динамических нагрузок, возникающих при резком изменении частоты вращения коленчатого вала двигателя или ведущих колес автомобиля.
Гаситель крутильных колебаний, присутствующий в конструкции современных сцеплений, препятствует появлению ударных и вибрационных нагрузок при работе двигателя и трансмиссии автомобиля.

Классификация сцеплений

По характеру работы различают постоянно замкнутые и постоянно разомкнутые сцепления.
Постоянно разомкнутые сцепления осуществляют связь между двигателем и трансмиссией только после достижения коленчатым валом двигателя определенной частоты вращения. Обычно включение таких сцеплений осуществляется посредством специального механизма, использующего силы инерции, возникающие при вращении деталей (см. далее центробежные сцепления).

Наиболее широкое применение в автомобильной трансмиссии нашли постоянно замкнутые сцепления, в которых при нормальном положении элементов осуществляется жесткая связь двигателя с трансмиссией.

По характеру связи между ведущими и ведомыми элементами различают следующие типы сцеплений:

  • фрикционные, передающие крутящий момент во включенном состоянии за счет сил трения;
  • гидравлические (гидромуфты), в которых для осуществления связи двигателя с трансмиссией используется кинетическая энергия жидкости (рис. 1, а);
  • электромагнитные, работающие на принципе магнитного взаимодействия ведущих и ведомых элементов (рис. 1, б), в том числе порошковые, в которых используется сила трения, возникающая при движении порошка железа (ферронаполнителя) в магнитном поле.

Гидромуфта является разновидностью гидротрансформатора, однако она не имеет реакторного колеса, поэтому не способна увеличивать крутящий момент, принимаемый от двигателя, а лишь передает его от ведущего элемента к ведомому, при этом может трансформировать крутящий момент от нуля до максимума. Степень трансформации зависит от количества и качества масла в гидромуфте, а также от частоты вращения насосного колеса (коленчатого вала двигателя).
Гидромуфты имеют невысокий КПД – потери мощности из-за проскальзывания колес муфты при передаче максимальной мощности могут достигать 3% и даже более. Включение и выключение гидромуфты осуществляется посредством наполнения или слива масла из рабочего объема, и, поскольку этот процесс требует времени, а турбинное колесо имеет значительную инертность, чистоту и скорость выключения и включения сцепления обеспечить невозможно.
Инертность работы гидромуфты приводит к динамическим нагрузкам на трансмиссию и двигатель при переключении передач, поэтому гидромуфты обычно используют в комбинации с фрикционным сцеплением.

В электромагнитном сцеплении ток, подводимый к электромагниту, создает магнитное поле, которое заставляет его перемещаться в сторону якоря. При этом создается усилие на нажимном диске, которое тем больше, чем больше угловая скорость вращения коленчатого вала двигателя.
При переключении передач электромагнит обесточивается специальным контактором и сцепление выключается. Из электромагнитных сцеплений наиболее часто используются порошковые, так как в них силовое взаимодействие деталей значительно выше, но и они не получили широкого распространения на автомобилях.

По числу ведомых дисков фрикционные сцепления могут быть однодисковыми (рис. 2, а), двухдисковыми (рис. 2, б) или многодисковыми (с числом ведомых дисков более двух). Многодисковые сцепления применяются очень редко, когда необходимо передать очень большой крутящий момент, например, на большегрузных автомобилях.

По состоянию поверхностей трения различают сухое сцепление, у которого для создания сил трения используется сухое трение между ведущими и ведомыми элементами, и мокрое сцепление, когда для создания сил трения ведущие и ведомые диски погружены в жидкость.

Автомобили марок «ВАЗ», «ЗИЛ», «ГАЗ», оснащены сухими однодисковыми сцеплениями, а автомобили марок «Урал» и «КамАЗ» – сухими двухдисковыми сцеплениями. В планетарных коробках передач в качестве блокировочных фрикционов или тормозных фрикционов используют многодисковые мокрые сцепления.

По способу создания нажимного усилия различают:

  • центробежные сцепления, в которых прижатие ведущих и ведомых элементов осуществляется за счет центробежных сил (рис. 3, а);
  • сцепления с центральной пружиной, в которых прижатие ведущих и ведомых элементов осуществляется одной или несколькими винтовыми пружинами, расположенными концентрично оси вращения сцепления (рис. 3, б);
  • сцепления с мембранной пружиной, в которых прижатие ведомых и ведущих дисков осуществляется посредством тарельчатой пружины специальной формы (рис. 3, в);
  • сцепления с периферийными пружинами, в которых прижатие ведомых и ведущих элементов осуществляется посредством цилиндрических пружин, расположенных по перефирии (рис. 2).

Центробежные сцепления устанавливались ранее на некоторых зарубежных грузовых автомобилях и ряде отечественных автомобилей. В них нажимное усилие создается за счет центробежных сил, образуемых при вращении грузиков.
Центробежные сцепления являются нормально разомкнутыми, т. е. при малой частоте вращения вала двигателя или при неработающем двигателе такое сцепление выключено (связь между двигателем и трансмиссией прерывается).

Сцепление с центральной цилиндрической пружиной использовалось в автомобилях марки «Татра».

Сцепление с центральной конической пружиной благодаря конструкции нажимного механизма может передавать достаточно большой крутящий момент при небольших габаритных размерах. Усилие пружины передается нажимному диску через рычаги, обеспечивая его равномерное прижатие к ведомым элементам. Поскольку нажимная пружина не соприкасается с нажимным диском, она меньше нагревается и дольше сохраняет упругость.
Сцепление с центральной конической пружиной используется на некоторых марках грузовых автомобилей.

Сцепление с мембранной пружиной применяется на легковых автомобилях и грузовых автомобилях малой грузоподъемности.

По типу привода различают сцепления с механическим и гидравлическим приводами. Механический привод содержит только механические элементы. В гидравлическом приводе усилие передается с помощью гидравлической системы.

По наличию и типу усилителей привода различают сцепления:

  • с пружинным усилителем (сервопружиной);
  • с пневматическим усилителем, работающим с использованием сжатого воздуха;
  • с вакуумным усилителем, использующим для работы разрежение во впускном трубопроводе двигателя;
  • с гидравлическим усилителем, использующим для работы жидкость под давлением.

Требования, предъявляемые к сцеплению

С учетом условий работы, места в схеме передачи энергии трансмиссией автомобиля к сцеплению предъявляются следующие требования:

    надежная передача крутящего момента от двигателя к коробке передач – обеспечивается необходимым запасом момента сцепления (момента трения) на всех режимах работы двигателя, сохранением нажимного усилия в необходимых пределах в процессе эксплуатации;

полнота включения, т. е. отсутствие пробуксовывания ведущих и ведомых элементов сцепления, обеспечивающая надежную передачу крутящего момента двигателя, – достигается в эксплуатации наличием зазора в механизме выключения и недопущения попадания смазочного материала на трущиеся поверхности;

полнота («чистота») выключения, обеспечивающая полное разъединение двигателя и трансмиссии, – достигается заданной величиной рабочего хода подшипника выключения и соответственно рабочим ходом педали сцепления;

плавное включение, обеспечивающее заданную интенсивность трогания автомобиля с места или после включения передачи, – достигается конструкцией сцепления, его привода и темпом отпускания педали сцепления водителем;

предохранение трансмиссии и двигателя от перегрузок и динамических нагрузок – достигается оптимальной величиной запаса момента сцепления, установкой на нем гасителя крутильных колебаний, специальными мероприятиями в конструкции ведомых элементов;

малый момент инерции ведомых деталей сцепления, снижающий ударные нагрузки на зубья колес при переключении передач;

обеспечение нормального теплового режима работы и высокой износостойкости за счет интенсивного отвода теплоты с поверхностей трения и применением качественных фрикционных материалов;

хорошая уравновешенность с целью исключения «биений» и соответственно динамических нагрузок при работе сцепления;

экономичность и технологичность: малые габариты, масса, низкая стоимость, простота конструкции и удобство технического обслуживания;

  • легкость и удобство управления, возможность автоматизации процессов включения и выключения.
  • Фрикционные одно- и двухдисковые сцепления наиболее полно отвечают указанным требованиям и из-за простоты конструкции получили наибольшее распространение.

    zykys › Блог › Принцип работы сцепления

    Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

    В зависимости от конструкции различают следующие типы сцепления:

    ✔фрикционное сцепление;
    ✔гидравлическое сцепление;
    ✔электромагнитное сцепление.

    Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

    Самым распространенным типом сцепления является фрикционное сцепление. Различает следующие виды фрикционного сцепления:

    ✔однодисковое сцепление;
    ✔двухдисковое сцепление;
    ✔многодисковое сцепление.

    В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

    На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Однодисковое сцепление имеет следующее устройство:

    ✔маховик;
    ✔картер сцепления;
    ✔нажимной диск;
    ✔ведомый диск;
    ✔диафрагменная пружина;
    ✔подшипник выключения сцепления;
    ✔муфта выключения;
    ✔вилка сцепления.

    Читать еще:  Машина на холостых газует

    Схема однодискового сцепления

    Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

    Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

    На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

    Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

    Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

    На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

    Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

    Схема двухдискового сцепления

    На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.
    Принцип работы сцепления

    Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

    При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

    При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

    Устройство и принцип действия сцепления

    Про такое узел автомобиля как сцепление знают наверняка все. И многие знают, что нужно оно для возможности безопасного переключения передач и при начале движения автомобиля. Но как же устроено сцепление, этот довольно капризный в освоении в автошколе узел?

    Ранее, в статье «Сцепление автомобиля», мы говорили о предназначении и классификации сцеплений. Теперь рассмотрим подробнее устройство и принцип работы самого распространенного типа сцепления — фрикционного сухого однодискового.

    Устройство фрикционного сухого сцепления

    Сухое фрикционное сцепление состоит из следующих основных частей:

    – Маховик;
    – Нажимной диск («корзина» сцепления);
    – Ведомый диск (диск сцепления);
    – Выжимной подшипник (подшипник выключения сцепления) и нажимная муфта;
    – Детали привода сцепления.

    Маховик. Маховик закреплен непосредственно на коленчатом валу двигателя и именно через него производится передача крутящего момента на трансмиссию. Сегодня обычно используются двухмассовые маховики: одна его часть крепится на коленвале, а вторая играет роль ведущего диска сцепления — на ней закреплены фрикционные накладки, за счет которых обеспечивается вращение ведомого диска. Части маховика соединены через пружины, выполняющие функции демпферов, снижающих уровень вибраций.

    Нажимной диск («корзина»). Этот узел состоит из корпуса (который по форме напоминает корзину, за что и получил свое название) и непосредственно нажимного диска, соединенного с корпусом через пружину (или пружины). Пружины постоянно прижимают нажимной диск к ведомому диску, за счет чего и производится передача крутящего момента от двигателя коробке передач. В «корзине» могут использоваться несколько пружин, расположенных по кругу, однако сейчас чаще применяется одна пружина (диафрагма), состоящая из ряда тангенциальных (расположенных по радиусу) пластин. С одной стороны пластины соединены с корпусом, а в центре — с выжимным подшипником. Корзина жестко закреплена на маховике, вращаясь с ним как единое целое.

    Ведомый диск. Расположен между маховиком и нажимным диском, его ступица надета на первичный вал коробки передач. Диск имеет сборную конструкцию: его основу составляет металлический диск, на котором с двух сторон находятся фрикционные накладки. Также в диске предусмотрены демпфирующие пружины, которые смягчают удары и делают передачу крутящего момента более плавной.

    Выжимной подшипник и нажимная муфта. Это подшипник особой конструкции, который упирается в центральную часть диафрагменной пружины и производит ее сжатие при выжимании сцепления. Выжимной подшипник здесь необходим по простой причине: корзина вращается вместе с маховиком, и если бы не было подшипника, нажимная муфта подвергалась бы сильному износу. Наличие подшипника решает эту проблему, так как муфта давит на его внешнюю часть, которая не вращается, а усилие на пружину передается через внутреннее кольцо.

    Детали привода сцепления. Это компоненты включения и выключения сцепления. Сюда входят вилка выключения сцепления (с ее помощью движется нажимная муфта), тросы (механический привод), гидроцилиндры и трубки (гидропривод), педаль и т.д.

    Принцип работы фрикционного сцепления

    Работа сухого однодискового фрикционного сцепления очень проста и сводится к следующему. Сцепление постоянно включено — это обеспечивается диафрагменной пружиной (или рядом пружин), которая прижимает нажимной диск к ведомому диску и к маховику. В таком положении весь узел сцепления вращается как единое целое, и крутящий момент полностью передается на коробку передач.

    При переключении передач сцепление выключается: при нажатии на педаль пружина сжимается (с помощью привода сцепления, нажимной вилки, муфты и выжимного подшипника), ее пластины, закрепленные в «корзине», действуют как рычаги, и отводят нажимной диск от ведомого диска. В этот момент передача крутящего момента от двигателя коробке прекращается и можно переключить передачу.

    После включения нужной передачи педаль сцепления отпускается, пружина возвращается в исходное положение, прижимая нажимной диск к ведущему диску и к маховику — передача крутящего момента возобновляется.

    Однако главное преимущество и все возможности сцепления проявляются в момент начала движения автомобиля. Сцепление устроено таким образом, что диски могут прижиматься друг к другу с различным усилием, а поэтому передача крутящего момента может производиться в такой степени, в которой это необходимо. Если слегка отпустить педаль сцепления, то диски будут прижаты друг к другу слабо и проскальзывать, соответственно, и крутящий момент будет передаваться на коробку и колесам не полностью — так становится возможным трогание с места и плавный разгон автомобиля.

    Двойное сцепление в автомобилях с АКП

    В автомобилях с автоматической коробкой передач педали сцепления нет, однако само сцепление присутствует, но управляет им автоматика. При этом в разных типах «автоматов» работают различные типы сцепления. Например, в роботизированных АКП применяется двойное сцепление, которое имеет ряд принципиальных отличий от сцепления, описанного выше.

    Двойное сцепление содержит два комплекта пластин, образующих фрикционные муфты, одна из которых отвечает за передачу крутящего момента к первичному валу нечетного ряда передач, вторая — к первичному валу четного ряда передач.

    Двойное сцепление работает в масляной ванне (поэтому оно относится к «мокром» типу), в нем используется пакеты из нескольких фрикционных дисков (то есть, это многодисковое сцепление). В нормальном положении пластины разомкнуты и удерживаются с помощью пружин. Сжатие дисков (как переключение передач в АКП) осуществляется с помощью масла, подающегося под давлением в гидроцилиндры муфт.

    Ссылка на основную публикацию
    ×
    ×
    Adblock
    detector