Подача топлива в инжекторном двигателе
Autoservice-ryazan.ru

Автомобильный портал

Подача топлива в инжекторном двигателе

Blog-Mycar.ru

Все о ремонте, тюнинге, устройстве, эксплуатации автомобиля, советы, автоновости, автофакты

Инжекторная система подачи топлива и ее работа

Инжекторная система подачи топлива в автомобилях стала массово распространяться с 80-х годов минувшего века. В их двигателях горючее в результате сжатия посредством форсунок-инжекторов под давлением впрыскивается в цилиндр или в коллектор впуска.

Инжекторная система подачи топлива

Чем хороша инжекторная система подачи топлива?

Время показало ее преимущества в сравнении с моторами, где топливо подается посредством карбюратора. Инжекторная схема мотора имеет немалые достоинства:

  1. Расход горючего в двигателях внутреннего сгорания меньше, что подтверждается инжекторной системой подачи топлива ВАЗ 2109;
  2. ДВС запускается проще, улучшаются его эксплуатационный режим;
  3. Система впрыска регулируется автоматически с помощью датчика кислорода;
  4. Отработанные газы содержат меньше углеводородов;
  5. При одинаковых объемах карбюраторного и инжекторного мотора у последнего мощность выше примерно на 10 %;
  6. В 2016 году производители автомобилей полностью отказались от карбюраторов в легковых и малых грузовых машинах.

Как работает инжектор?

Чтобы понять, как подается топливная смесь в инжекторный двигатель, необходимо представить себе устройство инжектора.

Обычно он состоит из:

  • Электробензонасоса;
  • Контроллера или электронного блока управления;
  • Регулятора давления;
  • Различных датчиков;
  • Собственно инжектора или форсунок.

Схема устройства инжекторной системы подачи топлива

Принцип работы инжектора достаточно прост. Контроллер анализирует поступающую от датчиков информацию и запускает бензонасос. Тот закачивает топливо в систему. С помощью регулятора давления обеспечиваются нужные параметры давления во впускном коллекторе и в инжекторах. Эти элементы хорошо работают в инжекторной системе подачи топлива ВАЗ 2107. Учитываются данные о положении и скорости вращения коленвала, расходе воздуха и другие. Электроника принимает решение о запуске двигателя и о том, как должен работать инжектор.

Принцип работы его основывается на четкой работе контроллера, который включает электромагнитный клапан форсунки с иглой. Он обеспечивает хорошее функционирование систем зажигания, подачи топлива, диагностики, охлаждения двигателя и других. В результате впрыск происходит точно в нужный момент. При этом топливовоздушная эмульсия подается в нужном количестве и составе.

Какими бывают инжекторы?

От форсунок в решающей степени зависит подача топлива в инжекторном двигателе. Долгое время весьма распространенной была система моновпрыска, при которой через одну форсунку можно осуществлять впрыск во все цилиндры. Определенное время она существовала наряду с многоточечным впрыском.

Эти виды инжекторов развивались по-разному. Моновпрыск не соответствовал Евро-3, быстро устарел и встречается не часто. Сегодня доминирует более совершенная система, с помощью которой осуществляется распределенный впрыск топлива.

Здесь на коллектор впуска цилиндра ставится отдельная форсунка или посредством нее топливная смесь попадает непосредственно в камеру сгорания. Распределенный впрыск топливной смеси может быть:

  • Одновременным;
  • Попарно-параллельным;
  • Фазированным или последовательным.

Особого внимания требуют машины, на которые ставятся несовершенные инжекторные системы подачи топлива. «Газель» является одним из примеров тому. Замена карбюраторного двигателя на инжекторный порой не уменьшала большой расход топлива.

Особенности устройства инжекторного двигателя

Для того чтобы грамотно эксплуатировать автомобиль, у которого имеется система питания бензинового двигателя с впрыском топлива, необходимо иметь представление о его работе. Особенно когда речь идет об отечественных автомобилях, инжекторной системе подачи топлива ВАЗ 2114 и других машин.

Без этого будет сложно самому понимать и устранять возможные неисправности машины. Усвоив особенности конструкции, принцип работы, устройство инжекторного двигателя можно разобраться в неисправности и даже устранить ее, не обращаясь на СТО.

Инжекторным двигателем управляет контроллер. В отечественных машинах его обычно размещают справа под приборной панелью. Задача этого прибора — непрерывно обрабатывать информацию о состоянии мотора и обеспечивать надежную работу его систем. Блок управления включает различные реле, форсунки, датчики.

С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.

Принципиальной особенностью двигателя является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.

Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.

Устройство электромагнитной форсунки бензинового двигателя

Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.

Основные системы

Сегодня большинство легковых автомобилей имеют инжекторный двигатель. Устройство его помимо блока управления и нейтрализатора предполагает наличие некоторых других важных систем. Среди них системы зажигания, подачи топлива и улавливания паров бензина.

Первая предусматривает наличие расположенного в топливном баке двухступенчатого электробензонасоса, фильтра для очистки топлива, топливопроводов и форсунок вместе с регулятором давления топлива. Фильтр расположен на топливной магистрали между топливной рампой и бензонасосом.

Например, в инжекторной системе подачи топлива ВАЗ 2110 не предполагаются наличия обычной катушки зажигания и распылителя в системе зажигания. В ней используется модуль и две катушки зажигания. Управляется она контроллером. Искра образуется одновременно в двух цилиндрах методом «холостой искры». Система не нуждается в обслуживании и регулировках.

Пары бензина улавливаются при помощи угольного адсорбера, устанавливаемого в моторном отсеке и соединенным с бензобаком и патрубком дросселя трубопроводами. Сверху этого устройства смонтирован электромагнитный клапан. При неработающем двигателе он закрыт.

Когда мотор запускается, он открывается. Блок управления посылает сигнал, воздухом продувается адсорбер. Бензиновые пары попадают в дроссельный патрубок, после чего сжигаются в цилиндрах.

Зачем нужны датчики?

Работа инжектора невозможна без наличия различных датчиков, которые сообщают контроллеру необходимую информацию. Работа датчиков инжекторного двигателя позволяет контролировать параметры работы мотора, предупредить его поломки.

Так, эти приборы различного назначения подают информацию:

  • О частоте, направлении вращения и положении коленвала;
  • Объеме всасываемого воздуха и его температуре;
  • О нагреве охлаждающей жидкости, что позволяет управлять впрыском и зажиганием;
  • О степени открытости дроссельной заслонки позволяет определить нагрузку двигателя;
  • О наличии кислорода в выхлопных газах, что помогает корректировать время впрыска и зажигание;
  • О появлении детонации, что предупреждает поломки мотора;
  • О состоянии распредвала для обеспечения синхронного впрыска.

В двигатель могут устанавливаться и другие датчики, обеспечивающие его надежную работу. Они помогают четко выявить причину, почему нет подачи топлива в двигатель.

Устройство и принцип работы инжектора

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Принцип работы инжектора

    Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

    • топливный бак;
    • электрический бензонасос;
    • фильтр очистки бензина;
    • топливопроводы высокого давления;
    • топливная рампа;
    • форсунки;
    • дроссельный узел;
    • воздушный фильтр.

    Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

    Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

    Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

    Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

    Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

    С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

    Читать еще:  Обороты плавают ваз

    Для своей работы ЭБУ использует показания датчиков:

    • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
    • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
    • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
    • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
    • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
    • Датчик детонации, расположен на блоке цилиндров;
    • Датчик скорости, установлен на коробке передач;
    • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

    Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

    На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

    При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

    Преимущества инжектора и его недостатки

    Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

    + Преимущества — Недостатки
    реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
    полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
    более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
    возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
    технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
    устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

    Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

    И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

    Инжекторная система

    На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

    Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

    Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

    Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

    Устройство системы

    Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

    К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

    • лямбда-зонд;
    • положения коленвала;
    • массового расхода воздуха;
    • положения дроссельной заслонки;
    • детонации;
    • температуры ОЖ;
    • давления воздуха во впускном коллекторе.

    Датчики системы инжектора

    На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

    Что касается механической части, то в ее состав входят такие элементы:

    • бак;
    • электрический топливный насос;
    • топливные магистрали;
    • фильтр;
    • регулятор давления;
    • топливная рампа;
    • форсунки.

    Простая инжекторная система подачи топлива

    Как все работает

    Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

    Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

    Первый инжекторный двигатель Toyota 1973 года

    Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

    Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

    Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

    К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

    Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

    Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

    Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

    Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

    Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

    Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

    По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

    Виды и типы инжекторов

    Инжекторы бывают двух видов:

    1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
    2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

    На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

    1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
    2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
    3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

    Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

    Обратная связь с датчиками

    Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

    Эволюция датчика лямбда-зонд от Bosch

    Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

    Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

    На разных режимах обратная связь работает так:

    • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
    • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
    • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
    • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
    • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
    • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

    Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

    Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

    Подача топлива в инжекторном двигателе, описание особенностей

    Инжекторные двигатели отличаются отсутствием карбюратора, вместо которого выступают новые системы подачи топливных смесей. При надавливании на педаль газа происходит автоматическое регулирование поступления воздуха в топливные цилиндры.

    Контроль бензиновых растворов производит специальное электронное устройство, внедренное в двигатель. Подача топлива в инжекторном двигателе отличается конструктивными особенностями, способствующими уменьшению количества вредных веществ, выбрасываемым в атмосферу.

    Отличия работы инжекторных двигателей

    Принцип подготовки воздушно-топливных смесей полностью отличается от предыдущих. Для создания высокого давления в подаваемых смесях топливный бак имеет встроенный электрический бензонасос. Бензин под давлением поступает в специальный отсек — рампу с форсунками для впрыска в цилиндры, где происходит смешивание его с воздухом.

    В зависимости от количества поступившего бензина, температуры двигателя, скорости вращения коленчатого вала электронное управляющее устройство (ЭБУ) регулирует такие параметры:

    1. Состав топливной смеси.
    2. Количество впрыскиваемой жидкости и объем воздуха.
    3. Расчет интервала, через который происходит открытие клапана на форсунке.

    Топливо подается под автоматическим контролем. Электронное управление является мозговым центром автомобиля.

    Автоматизация контроля поступления топлива в систему питания инжекторного мотора позволяет улучшить основные показатели машины:

    • скорость разгона;
    • показатели загрязнения экологии;
    • общий расход бензина.

    Описание преимуществ инжекторных систем

    По сравнению с карбюраторами системы питания инжекторного двигателя имеют следующие достоинства:

    1. Более тщательная дозировка количества топливной смеси позволяет существенно экономить общий расход.
    2. Использование датчиков, следящих за характеристиками топливных смесей и выхлопных газов, приводит к снижению токсичности выхлопа.
    3. Опережение зажигания, регулировка угла в соответствии с режимами двигателя способствует росту мощности почти на 10%.
    4. При изменениях нагрузки происходит мгновенная корректировка системой впрыска состава топливно-воздушной смеси.
    5. Наличие гарантированного облегченного запуска при любой погоде.
    6. Уменьшение количества углеводородов в отработанных газах

    Недостатки инжекторных двигателей:

    • высокие цены на ремонт и обслуживание;
    • многие узлы и детали не подлежат восстановлению, возникает необходимость их полной замены;
    • повышенные требования к качеству бензина;
    • потребность в специализированном диагностическом, обслуживающем и ремонтном оборудовании.

    Корректировка функций двигателя контроллером ЭБУ

    Современные двигатели впрыскивающего типа используют обособленные форсунки, предназначенные для цилиндров. Бензонасос инжекторного двигателя создает необходимое давление, топливо через открытые клапаны форсунок поступает в специальную камеру для сжигания.

    Электронный блок управления (ЭБУ) осуществляет регулирование момента открытия каждой форсунки. Встроенная система специальных приборов — датчиков служит для передачи необходимой информации управляющему устройству.

    Данные, используемые ЭБУ:

    1. Расход воздуха.
    2. Расположение дроссельной заслонки.
    3. Контроль охлаждающей жидкости.
    4. Расположение коленчатого вала.
    5. Кислород в газах.
    6. Наличие детонации.
    7. Состояние распределительного вала.

    Количество расхода воздуха влияет на автоматический перерасчет наполненности цилиндров отдельного цикла. При поломке считывающего прибора перерасчет производится по специальным таблицам аварийного состояния.

    Загруженность двигателя, количество оборотов, наполненность цилиндров в одном цикле рассчитываются при помощи информации, предоставляемой датчиком расположения заслонки дросселя, отражающих угол ее открытия.

    Прибор, отражающий нагрев охлаждающей жидкости, помогает откорректировать впрыск, зажигание, участвует в управлении электрической вентиляцией. При отказе датчика используются температурные данные, присущие определенному периоду действия силового агрегата, находящиеся в специальной таблице.

    Датчик положения коленвала является прибором, без которого невозможно передвижение всей машины. При выходе из строя данного прибора автомобиль не в состоянии добраться даже до ближайшего СТО. С его помощью синхронизируется вся система, производится расчет оборотов движка, определяется расположение коленчатого вала в любой момент работы двигателя.

    Кислородный прибор поставляет данные о насыщенности отработавших газов элементом О2. После получения сведений ЭБУ корректирует состав направляемого топлива, его количество. Международные нормы контроля выбросов Евро-2 и Евро-3 требуют использовать данные приборов, следящих за кислородом. Евро-3 предполагает наличие двух кислородных приборов, расположенных после каталитического катализатора и перед ним.

    При сигнале специального датчика о возникновении детонации ЭБУ гасит ее путем корректировки угла опережения зажигания. Эксплуатация мотора с детонацией приводит к ускоренному сгоранию топлива. Возникают ударные нагрузки на двигатель, нагрев всех элементов, дымный выброс, прогорание поршней и клапанов, увеличение расхода топлива, снижение мощности силового агрегата. Такая работа мотора крайне нежелательна.

    Датчик, контролирующий распределительный вал, подает информацию, необходимую для создания синхронности при впрыске.

    В зависимости от встроенной системы впрыска силовые агрегаты комплектуются приборами, помогающими выявлять причины отсутствия поступления бензина в движок. Дополнительные приборы осуществляют контроль за выбросами.

    Управляющий механизм также корректирует функционирование рабочих узлов:

    • системы зажигания;
    • вентилятора системы охлаждения;
    • регулятора холостого хода;
    • бензонасоса;
    • форсунок;
    • клапана адсорбера, предназначенного для улавливания паров бензина.

    При запуске силового агрегата остатки паров автоматически направляются в камеру для последующего сжигания.

    Благодаря четкому взаимодействию всех механизмов производится точное впрыскивание топлива. Состав и количество топливной смеси отрегулированы благодаря отлаженной работе ЭБУ.

    Описание видов систем питания

    Системы впрыска имеют несколько разновидностей:

    1. Одноточечные, при которых имеется одна форсунка и несколько цилиндров.
    2. Многоточечные, здесь каждый цилиндр снабжен своей форсункой.
    3. Непосредственные системы основаны на работе по принципу дизелей, где подача топлива производится форсунками прямо в цилиндры.

    Схема системы питания одноточечного типа:

    При применении одноточечных систем или моновпрыска используется минимальное количество управляющей электроники. На основании данных, полученных с датчиков, ЭБУ изменяет условия подачи топлива. При одноточечном впрыске существенно экономится бензин, улучшается состав выхлопа, повышается надежность двигателя. К недостаткам такого типа системы относится снижение приемистости двигателя, наблюдается скопление топлива на стенках коллектора в виде осадка.

    Схема питания многоточечного впрыска:

    Система питания многоточечного впрыска более совершенна. Здесь топливо подается на каждый цилиндр. Данный метод впрыска топлива отличается сложностью, однако мощность двигателя при этом возрастает почти на десять процентов.

    При установке двигателей с многоточечным впрыском автомобиль получает ускоренный разгон благодаря настройкам и качественному наполнению цилиндров. Приближение клапанов впуска к форсункам способствует точности подачи топлива, минимизирует вероятность образования топливных осадков.

    Впрыскивающие системы непосредственного типа обладают оптимальным сочетанием высокого качества сгорания воздушно-топливных смесей и повышенного КПД. В двигателях непосредственной системы питания более тщательно производится распыление и смешивание с воздушными потоками, происходит более грамотное распределение готовой смеси в зависимости от режимов работы мотора.

    К преимуществам относится экономичность расхода топлива, увеличение интенсивности ускорения машины, более чистый выхлоп. К недостаткам можно отнести повышенные требования к качеству бензина. Топливная аппаратура такого двигателя очень капризна.

    Проведение техобслуживания систем питания инжекторных двигателей

    Мероприятия по техническому обслуживанию систем питания обладают особенностями:

    1. В процессе эксплуатации моторов наиболее часто подвергаются загрязнениям и выходу из строя воздушные фильтры. Каждые тридцать тысяч километров пробега необходимо менять фильтрующий элемент на новый экземпляр. Рекомендуется также регулярно очищать извлеченный узел от грязи и пыли при помощи щетки и встряхивания.
    2. Возникновение рывков при движении машины говорит о необходимости замены фильтра, производящего тонкую очистку топлива. Рекомендуется также производить плановые замены после очередных 30 тыс. км пробега.
    3. Форсунки подвергаются регулярным проверкам, производится замена регулятора холостого хода.

    Как работает инжекторная система подачи топлива.


    Subaru Justy 1990 года выпуска, был последним автомобилем, выпущенным в США, в котором использовался карбюратор, в следующей модели уже применялась инжекторная система подачи топлива. Однако инжекторная система подачи топлива известна с 50-х годов прошлого столетия, а управляемая электроникой, начиная примерно с 1980 года. На данный момент все автомобили, продаваемые в США, оснащены инжекторной системой подачи топлива.
    Почему не прижился карбюратор?
    Карбюратор — устройство, которое подаёт топливо в двигатель. Например, в газонокосилках и бензопилах, до сих пор используется карбюратор. Автомобиль эволюционировал и карбюратор становился всё больше и сложнее.
    Ему необходимо было выполнять пять различных функций:

    • Главная функция — обеспечить малое потребление топлива во время езды в “спокойном режиме”;
    • Функция холостого хода — обеспечить контролируемую подачу топлива для поддержания холостого хода;
    • Функция ускорительного насоса — обеспечить дополнительный впрыск топлива, когда нажата педаль газа;
    • Функция обогащения питания — обеспечить дополнительное топливо, когда автомобиль едет в гору или буксирует прицеп;
    • Функция подсоса — обеспечить дополнительное топливо, когда двигатель холодный;

    В целях уменьшения количества вредных выбросов, были введены каталитические нейтрализаторы. Кислородный датчик определяет количество кислорода в выхлопе, а блок управления двигателем использует эту информацию, для того чтобы регулировать соотношение воздух-топливо в режиме реального времени.
    Это называется замкнутый цикл управления. Этого невозможно было добиться с карбюратором. До появления инжекторной системы впрыска топлива был короткий период электрически управляемых карбюраторов, но эти карбюраторы были ещё более сложными чем чисто механические. Сначала карбюратор заменили на моноинжектор, он представлял собой дроссельную заслонку, совмещённую с форсункой. Следующим этапом после моноинжекторов стала система распределенного впрыска топлива. В отличие от моноинжектора в системе распределенного впрыска количество форсунок равно количеству цилиндров.

    Что происходит когда мы жмём на газ?
    Педаль газа в автомобиле подключена к дроссельной заслонке. Дроссельная заслонка — это клапан, который регулирует количество воздуха, поступающего в двигатель. Когда мы нажимаем на педаль газа, дроссельная заслонка открывается, позволяя большему количеству воздуха попадать в двигатель. Блок управления двигателем, который управляет всеми электронными компонентами двигателя, “видит”, что дроссельная заслонка открылась и увеличивает расход топлива, в ожидании того, что в двигатель поступит больше воздуха.
    Важно, что бы расход топлива увеличивался как только откроется дроссельная заслонка, иначе при нажатии на педаль газа будет некоторое запаздывание.
    Датчики также регистрируют массу воздуха, поступающего в двигатель, и количество кислорода в выхлопе. Опираясь на эту информацию, блок управления двигателем регулирует подачу топлива.

    Форсунка.
    Форсунка — это не что иное, как электромагнитный клапан, к которому подводится топливо и способный открываться множество раз в секунду. Когда на форсунку подаётся напряжение, электромагнитный клапан открывается и топливо под давлением распыляется через крошечные сопла. Сопла необходимы для того чтобы топливо превратить в мелкий туман, в таком состоянии оно лучше горит. Количество топлива, подаваемого в двигатель, определяется временем, когда топливная форсунка открыта. Это время зависит от ширины импульса, который подаёт электронный блок управления двигателем (ЭБУ). Форсунки установлены во впускном коллекторе и распыляют топливо прямо на клапана. Топливо подводится к форсункам через трубку, которая называется топливной рампой.

    Датчики двигателя.
    В целях обеспечения необходимого количества топлива на всех режимах работы двигателя, ЭБУ должен контролировать большое количество входных параметров, с различных датчиков.
    Вот только некоторые из них:

    • Датчик массового расхода воздуха — сообщает ЭБУ массу воздуха, поступающего в двигатель;
    • Датчики кислорода — определяют количество кислорода в выхлопных газах, на основе этих данных ЭБУ корректирует качество смеси;
    • Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки, которая определяет какое количество воздуха попадёт в двигатель, это позволяет ЭБУ быстрее реагировать, уменьшая или увеличивая расход топлива. Дело в том, что массовый расходомер воздуха (который по сути определяет массу воздуха поступающего в двигатель) инерционен, то есть при изменении потока воздуха он реагирует с некоторым опозданием.
      Информация с дроссельной заслонки приходит раньше чем с массового расходомера воздуха, что позволяет нам не чувствовать его инерционности;
    • Датчик температуры охлаждающей жидкости — предоставляет данные ЭБУ о температуре охлаждающей жидкости;
    • Датчик абсолютного давления — контролирует давление воздуха во впускном коллекторе.
      По известному количеству воздуха, поступающего в двигатель, можно посчитать какая энергия образуется в двигателе. Чем больше воздуха поступает в двигатель, тем меньше разряжение во впускном коллекторе;
    • Вольтметр — контролирует напряжение сети, ЭБУ может поднять обороты холостого хода если напряжение сети упало, что указывает на высокую электрическую нагрузку;

    Распределенный впрыск или как его ещё называют многоточечный, бывает четырёх видов:

    • Одновременный впрыск — все форсунки открываются одновременно;
    • Попарно-параллельный впрыск — форсунки открываются парами, только в одном цилиндре в это время впускной такт и топливо попадёт в цилиндр, а в другом выпускной. Но так как за попадание топлива в цилиндр отвечают клапана, это не мешает работе двигателя.
      В современных моторах попарно-параллельный впрыск используется в аварийном режиме, когда неисправен датчик распредвала, также называемый датчиком фаз;
    • Фазированный впрыск — каждая форсунка открывается непосредственно перед впускным тактом;
    • Прямой впрыск — тот же фазированный впрыск, только топливо впрыскивается прямо в камеру сгорания;

    Микросхемы, управляющие работой двигателя.
    Алгоритмы с помощью которых ЭБУ контролирует работу двигателя очень сложны.
    Программное обеспечение должно позволить автомобилю удовлетворить все требования по токсичности выбросов. ЭБУ использует формулы и большое количество таблиц, чтобы определить длительность импульса, подаваемого на форсунки.
    Давайте рассмотрим как это примерно происходит. Есть уравнение с помощью которого можно вычислить длительность импульса, для управления форсункой. В это формула входит множество переменных, некоторые из них берутся из таблиц. Мы пойдём по упрощённой схеме расчёта, будем считать что уравнение, которое описывает длительность импульса, состоит из двух коэффициентов и базовой длительности импульса, в реальной системе коэффициентов более сотни.
    Выглядит формула следующим образом:
    Длительность импульса = (базовая длительность импульса) х (коэффициент А) х (коэффициент B)

    Для того чтобы вычислить длительность импульса, ЭБУ сначала смотрит базовую длительность импульса в справочной таблице. Базовая длительность импульса зависит от частоты вращения двигателя (RPM) и нагрузки (которая может быть вычислена из абсолютного давления в коллекторе). Предположим обороты двигателя 2000 оборотов в минуту и нагрузка равна 4. Находим значение на пересечении 2000 и 4, оно составляет 8 миллисекунд.

    Теперь по известным данным рассчитаем длительность импульса:
    Длительность импульса = 8 х 0,8 х 1,0 = 6,4 мс
    Из этого примера, видно, как ЭБУ регулирует длительность импульса.
    Системы реального контроля может иметь более 100 параметров, каждому параметру соответствует собственная таблица. И в зависимости от оборотов двигателя, ЭБУ, приходится производить расчёты более ста раз в минуту.

    Производительность чипов.
    Теперь когда мы понимаем как работает ЭБУ, можем поговорить о том как увеличить мощность двигателя. В ЭБУ есть чип в котором располагаются все справочные таблицы. Этот чип можно заменить на аналогичный, с другими таблицами. Эти таблицы будут содержать в себе значения, которые будут увеличивать подачу топлива на определённых этапах езды.
    Например, можно увеличить количество топлива поступающего в двигатель как на полном газу, так и на любых оборотах. Поскольку производители таких прошивок для чипов, не озабочены количеством вредных выбросов, они используют более агрессивные настройки подачи топлива, при написании прошивки.

    Инжекторная система — что это и как она работает

    Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

    Немного истории

    Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

    Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

    Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

    Что такое инжектор и чем он хорош

    Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

    Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

    1. Экономичность расхода;
    2. Лучший выход мощности;
    3. Меньшее количество вредных веществ в выхлопных газах;
    4. Легкость пуска мотора при любых условиях.

    И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

    Видео: Принцип работы системы питания инжекторного двигателя

    Виды инжекторов

    Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

    Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

    Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

    1. Центральная;
    2. Распределенная;
    3. Непосредственная.

    1. Центральная

    Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

    Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

    2. Распределенная

    Распределенный впрыск топлива

    Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

    Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

    К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

    3. Непосредственная

    Система непосредственного впрыска топлива

    Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

    Конструкция и принцип работы инжектора

    Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

    Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

    Механическая составляющая инжектора

    Система питания автомобилей ВАЗ 2108, 2109, 21099

    К механической части инжектора относится:

    • топливный бак;
    • электрический бензонасос;
    • фильтр очистки бензина;
    • топливопроводы высокого давления;
    • топливная рампа;
    • форсунки;
    • дроссельный узел;
    • воздушный фильтр.

    Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

    Видео: Инжектор

    Принцип работы инжектора

    Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

    Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

    Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

    Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

    Устройство электромагнитной форсунки

    Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

    С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

    Электронная составляющая

    Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

    Для своей работы ЭБУ использует показания датчиков:

    1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
    2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
    3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
    4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
    5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
    6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
    7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
    8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

    Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

    Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

    При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Ссылка на основную публикацию
×
×
Adblock
detector