Система холостого хода карбюратора
Autoservice-ryazan.ru

Автомобильный портал

Система холостого хода карбюратора

Устройство автомобилей

Вспомогательные устройства карбюраторов

Системы холостого хода

При работе двигателя на малых частотах вращения без нагрузки дроссельная заслонка закрывается почти полностью. Разрежение в диффузоре, где расположен распылитель, в этом случае снижается настолько, что подача топлива из главной дозирующей системы прекращается.

Для приготовления горючей смеси необходимого состава (0,7 ≤ α ≤ 0,85) на холостом ходу используется пространство воздушного патрубка под дроссельной заслонкой (задроссельное пространство). При этом топливо в задроссельное пространство подается специальной системой, которая называется системой холостого хода.

Из-за создавшегося разрежения под прикрытой дроссельной заслонкой в зоне эмульсионных отверстий 2 и 3 (см. Рис. 1) топливо из поплавковой камеры через главный топливный жиклер 16 и жиклер 7 холостого хода поступает по каналам 8 и 9. При этом к нему подмешивается воздух, который подсасывается через воздушный жиклер 10. Через отверстие 4, расположенное выше кромки прикрытой дроссельной заслонки, к топливу подмешивается дополнительное количество воздуха. В результате к выходным отверстиям 2 и 3 поступает топливовоздушная эмульсия требуемого состава.

Устойчивую работу двигателя с малой частотой вращения обеспечивают с помощью регулировочных винтов 5 и 17. Винтом 5 регулируют количество поступающей эмульсии, и, следовательно, состав смеси. Количество смеси и частоту вращения на режиме холостого хода регулируют винтом 17, который изменяет положение дроссельной заслонки 1 при полностью отпущенной педали акселератора.

После начала открытия дроссельной заслонки (при переходе с режима холостого хода на режим средних нагрузок) главная дозирующая система вступает в работу с небольшим запаздыванием, что может привести к кратковременному переобеднению смеси и «провалу» в работе двигателя.
Однако плавный переход к работе двигателя на малых и средних нагрузках обеспечивается тем, что уже в самом начале открытия дроссельной заслонки отверстие 4 попадает в зону сильного разрежения. Поэтому через него в смесительную камеру поступает дополнительное количество эмульсии.

При дальнейшем открытии дроссельной заслонки вступает в работу главная дозирующая система. Однако подача топлива через систему холостого хода продолжается до открывания дроссельной заслонки примерно на 40% от максимального открытия.

Экономайзер принудительного холостого хода

Системы холостого хода современных карбюраторов имеют дополнительное устройство – экономайзер принудительного холостого хода.
Данное устройство отключает подачу топлива через систему холостого хода при торможении автомобиля двигателем. При таком торможении дроссельная заслонка закрыта, а частота вращения коленчатого вала велика, так как он приводится во вращение через трансмиссию от колес автомобиля.
В результате под дроссельной заслонкой разрежение многократно возрастает, расход топливной эмульсии через отверстия 2 и 3 резко увеличивается, что приводит к усиленному недогоранию топлива и выбросу в окружающую среду токсичных веществ.

Экономайзер принудительного холостого хода (ЭПХХ) включает в себя электромагнитный клапан, который перекрывает подачу топливной эмульсии к выходным отверстиям системы холостого хода, датчик положения дроссельной заслонки и электронный блок управления. Электронный блок управления получает сигналы о положении дроссельной заслонки от датчика и о частоте вращения коленчатого вала от системы зажигания. При определенном соотношении этих сигналов блок управления выдает управляющий сигнал на закрытие или открытие электромагнитного клапана экономайзера принудительного холостого хода.
Исходными данными для срабатывания электромагнитного клапана ЭПХХ являются сигнал датчика о закрытой заслонке и повышенное число оборотов коленчатого вала.
Такой режим ЭПХХ поддерживает пока:

  • скорость движения при отпущенной дроссельной заслонке не уменьшится;
  • не будет выключена передача и автомобиль начнет двигаться в режиме обычного холостого хода;
  • водителем нажмет педаль акселератора и движение продолжится с повышенной скоростью, экономайзер выключится по положению заслонки.

Работа экономайзера в составе системы холостого хода карбюратора обеспечивает экономию топлива и лучшую эффективность торможения мотором в режиме принудительного холостого хода.

Система холостого хода карбюратора

Для питания двигателя горючей смесью в случае прикрытой дроссельной заслонки в современных карбюраторах предусмотрена система холостого хода. Различают две системы холостого хода: с задроссельным смесеобразованием и автономную.

Система холостого хода с задроссельным смесеобразованием. Она содержит топливный жиклер, сообщенный через канал с топливным жиклером главной дозирующей системы, воздушный жиклер и эмульсионный канал с размещенными в нем подстроечным винтом и винтом регулировки качества (состава) горючей смеси.

Подстроечный винт (получил распространение в карбюраторах семейства ДААЗ ) предназначен для уменьшения разброса характеристик холостого хода карбюратора в условиях массового производства. Он позволяет компенсировать производственные неточности расположения переходных отверстий по высоте относительно верхней кромки дроссельной заслонки. С помощью винта регулируют подачу воздуха из диффузорного пространства в эмульсионный канал. Такую операцию выполняют при настройке карбюратора на заводе-изготовителе. В дальнейшем винт пломбируют и вскрывать его в дальнейшем нельзя, так как на регулировку системы холостого хода в эксплуатации он не влияет. Количество горючей смеси, подаваемой в двигатель, регулируют с помощью регулировочного (упорного) винта, размещенного на корпусе карбюратора. Наличие средств регулирования состава и количества горючей смеси обусловлено тем, что различные двигатели имеют неодинаковые механические потери, на преодоление которых затрачивается и различное количество топлива на режимах холостого хода.

Рекламные предложения на основе ваших интересов:

При работе двигателя на режимах холостого хода дроссельная заслонка полностью прикрыта, и разрежение из задроссельного пространства через выходное отверстие и каналы передается к топливному жиклеру дозирующей системы. Под действием этого разрежения топливо через жиклер, канал и топливный жиклер холостого хода поступает в эмульсионный канал и через выходное отверстие в задроссельное пространство. Скорость движения воздуха в задрос-сельном пространстве невысокая, поэтому топливо здесь распыляется неэффективно и, следовательно, возможно неравномерное его распределение по цилиндрам двигателя. Это требует обогащения горючей смеси, сопровождающейся неизбежным увеличением содержания в отработавших газах окиси углерода (СО) и углеводородов (СН).

Ужесточение экономических требований привело к созданию элементов, препятствующих неквалифицированному вмешательству в работу системы холостого хода. В карбюраторах производства ДААЗ для этой цели на винт качества смеси устанавливают пластмассовую ограничительную втулку, которая позволяет вращать винт только в пределах одного оборота, а на карбюраторах производства С.-ПКарЗ в эмульсионные каналы системы холостого хода устанавливают винты токсичности.

Приведенная принципиальная схема системы питания холостого хода является наиболее распространенной и реализована в современных карбюраторах производства ДААЗ и АО „Пекар”.

Система холостого хода карбюратора ВАЗ -2101. Система холостого хода имеется только в первичной камере карбюратора. Она обеспечивает переход двигателя с режима холостого хода к работе его под нагрузкой.

Система содержит подстроечный регулировочный винт, топливный жиклер с винтом, сообщенный через топливный канал, и главный топливный жиклер с поплавковой камерой. Эмульсионный канал через нерегулируемое отверстие переходной системы и регулируемое выходное отверстие сообщен с задроссельным пространством. Регулировочный винт обеспечивает необходимый состав горючей смеси. Питание системы холостого хода осуществляется от главной дозирующей системы и выполнено после главного топливного жиклера.

В корпусе поплавковой камеры выполнено вентиляционное отверстие и размещен клапан, кинематически связанный через шток с дроссельной заслонкой. В случае прикрытия дроссельной заслонки клапан обеспечивает сообщение поплавковой камеры с атмосферой. С помощью винта производят дополнительную подачу воздуха в эмульсионный канал из главного воздушного канала в корпусе. Воздушный жиклер располагается в зоне устойчивого воздушного потока. В системе холостого хода карбюратора ВАЗ -2101 его питание осуществляется из надтопливного пространства поплавковой камеры.

Для улучшения испарения, смешивания и распределения топлива по цилиндрам двигателя корпус смесительной камеры в зоне регулируемого отверстия системы холостого хода обогревается теплом охлаждающей жидкости двигателя, поступающей через канал. Количество горючей смеси, поступающей в двигатель, регулируют с помощью винта.

Под действием разрежения, создаваемого работающим двигателем, топливо из поплавковой камеры через главный топливный жиклер, топливный канал и топливный жиклер поступает в эмульсионный канал, где смешивается с воздухом, проходящим через воздушный жиклер. Образовавшаяся горючая смесь поступает в задроссельное пространство карбюратора. При полном открытии дросселя система холостого хода работает, как дополнительный воздушный жиклер главной дозирующей системы.

Система холостого хода карбюратора BA3-2103 и ВАЗ -2106. Система этих карбюраторов отличается от аналогичной системы карбюратора ВАЗ -2101 наличием электромагнитного клапана. Клапан состоит из электромагнита с подвижным стержнем, нажимной пружины и корпуса. На работающем двигателе на клапан подается напряжение, и стержень перемещается, открывая клапан.

Клапан при выключенном зажигании перекрывает канал подачи топлива и его паров и тем самым исключает возможность самовоспламенения горючей смеси (калильного зажигания) в горячем двигателе после его остановки.

Рассмотренные системы холостого хода включены последовательно после топливного жиклера главной дозирующей системы. Такое включение обеспечивает плавный переход от режимов холостого хода к режимам с нагрузкой. Вместе с тем в подобных системах наблюдается неудовлетворительное перемешивание топлива с воздухом.

Автономные системы холостого хода ( АСХХ ). АСХХ , представляющие по существу автономный карбюратор, реализованы в карбюраторах „Озон”, ДААЗ -2108, -2141, К-131, -151, -156 и др.

АСХХ содержит топливный жиклер, сообщенный через топливный канал, топливный жиклер главной дозирующей системы с поплавковой камерой, и эмульсионный канал с подстроечным винтом, обводной воздушный канал с размещенным в нем профильным дозирующим винтом и выходное регулируемое отверстие, сообщенное с задроссельным пространством. В эмульсионном канале размещены воздушный жиклер и регулировочные винты соответственно состава и количества горючей смеси.

Под действием разрежения, создаваемого в задроссельном пространстве работающим двигателем, топливо через канал поступает к жиклеру, смешивается с воздухом, поступающим через воздушный жиклер. При этом основная часть воздуха проходит через обводной канал и кольцевой распылитель со скоростями, близкими к звуковым. Одновременно с этим к кольцевому распылителю по эмульсионному каналу поступает горючая смесь, где она дополнительно испаряется и равномерно перемешивается с воздухом, а затем через регулируемое отверстие 9 поступает в задроссельное пространство. Конструкция профиля дозирующего винта в зоне кольцевого распылителя обеспечивает стабильный состав горючей смеси независимо от величины проходного сечения регулируемого отверстия.

Особенность смесеобразования АСХХ заключается в том, что в задроссельное пространство поступает хорошо испаренная и перемешанная горючая смесь. Равномерное ее распределение по цилиндрам двигателя позволяет снизить концентрации СО и СН, повысить топливную экономичность и устойчивость работы двигателя на режимах холостого хода.

В многокамерных карбюраторах система холостого хода предусмотрена только в первичной камере. Во вторичной камере вместо системы холостого хода предусмотрена переходная система, которая вступает в работу в момент открывания вторичной заслонки карбюратора.

Система холостого хода карбюратора ДААЗ -21081. Система содержит топливный жиклер с электромагнитным клапаном, сообщенный через канал с поплавковой камерой, воздушный жиклер, выходящий в главный воздушный канал, винты качества и количества соответственно и каналы выхода горючей смеси в главный воздушный канал. Главный топливный жиклер не связан с системой АСХХ .

Под воздействием разрежения в задроссельном пространстве топливо поступает по каналам, через топливный жиклер электромагнитного клапана и эмульсионный канал и каналы в главный воздушный канал.

Винт качества горючей смеси не подлежит регулировке в эксплуатации. Его регулируют на заводах-изготовителях или на

специализированных станциях, а затем пломбируют. В эксплуатации в таких карбюраторах регулируют только минимальную частоту вращения коленчатого вала с помощью винта упора дроссельной заслонки. Винт не позволяет обогащать горючую смесь, поступающую в цилиндры двигателя.

Система холостого хода карбюратора К-151. Система содержит блок с воздушным и эмульсионным жиклерами соответственно, эмульсионный канал, обводной канал, винты качества горючей смеси, диффузор П обводного канала и винт количества (эксплуатационной настройки).

Система холостого хода тесно взаимодействует с ЭПХХ , содержащим блок с винтом и выходным отверстием, запорный элемент. Пневмоклапан имеет мембрану, нагруженную пружиной, и отверстие. Электропневмоклапан через трубопровод сообщен с задроссельным пространством вторичной камеры и шланг и трубку с наддиафрагменной полостью пневмоклапана.

Под действием разрежения при закрытой дроссельной заслонке первичной камеры эмульсия поступает через обводной канал и его диффузор, отверстие и выходит в задроссельное пространство первичной камеры. При открывании дроссельной заслонки эмульсия из канала через переходные отверстия поступает в задроссельное пространство.

Система холостого хода карбюратора К-156. Система снабжена дополнительной системой холостого хода в дополнительной секции. Обе системы соединены с эмульсионным колодцем главной дозирующей системы. Топливные жиклеры выполнены в блоке с воздушными и представляют собой трубки с калиброванными отверстиями.

Система холостого хода имеет двойное эмульсирование, обеспечивающее улучшение смесеобразования и обеднение горючей смеси.

Система питания 2108 Карбюратор

Карбюратор

Внешний вид карбюратора

1 – блок подогрева зоны дроссельной заслонки;
2 – штуцер вентиляции картера двигателя;
3 – крышка ускорительного насоса;
4 – электромагнитный запорный клапан;
5 – крышка карбюратора;
6 – шпилька крепления воздушного фильтра;
7 – рычаг управления воздушной заслонкой;
8 – крышка пускового устройства;
9 – сектор рычага привода дроссельных заслонок;

10 – колодка провода датчика-винта ЭПХХ;
11 – регулировочный винт «количества» смеси холостого хода;
12 – крышка экономайзера;
13 – корпус карбюратора;
14 – штуцер подачи топлива;
15 – штуцер отвода топлива;
16 – регулировочный винт состава смеси холостого хода (по стрелке);
17 – штуцер для подачи разрежения к вакуумному регулятору зажигания.

Схема устройства и работы карбюратора

I – первая камера;
II – вторая камера;
1 – рычаг привода ускорительного насоса;
2 – регулировочный винт;
3 – диафрагма пускового устройства;
4 – воздушный канал пускового устройства;
5 – электромагнитный запорный клапан;
6 – топливный жиклер холостого хода;
7 – главный воздушный жиклер первой камеры;
8 – воздушный жиклер холостого хода;
9 – воздушная заслонка;
10 – распылитель главной дозирующей системы первой камеры;
11 – распылители ускорительного насоса;
12 – распылитель главной дозирующей системы второй камеры;
13 – распылитель эконостата;
14 – главный воздушный жиклер второй камеры;
15 – воздушный жиклер переходной системы второй камеры;
16 – канал балансировки поплавковой камеры;
17 – поплавковая камера;
18 – игольчатый клапан;
19 – калиброванное отверстие перепуска топлива в бак;
20 – топливный фильтр карбюратора;
21 – штуцер подачи топлива;
22 – диафрагма экономайзера мощностных режимов;
23 – топливный жиклер экономайзера мощностных режимов;
24 – шариковый клапан экономайзера мощностных режимов;
25 – поплавок;
26 – топливный жиклер эконостата с трубкой;
27 – топливный жиклер переходной системы второй камеры с трубкой;
28 – эмульсионная трубка второй камеры;
29 – главный топливный жиклер второй камеры;
30 – выходные отверстия переходной системы второй камеры;
31, 33 – дроссельные заслонки;
32 – щель переходной системы первой камеры;
34 – выходное отверстие системы холостого хода;
35 – блок подогрева зоны дроссельной заслонки;
36 – регулировочный винт состава (винт «качества») смеси холостого хода;
37 – штуцер вентиляции картера двигателя;
38 – штуцер для подачи разрежения к вакуумному регулятору зажигания;
39 – главный топливный жиклер первой камеры;
40 – эмульсионная трубка первой камеры;
41 – шариковый клапан ускорительного насоса;
42 – диафрагма ускорительного насоса.

Читать еще:  Редукционный клапан топливной системы

Для приготовления топливно-воздушной смеси необходимого состава (в зависимости от режима двигателя) служит карбюратор. На двигателях -2108, -21081 и -21083 устанавливаются карбюраторы типа «Солекс» — эмульсионного типа, двухкамерные, с последовательным открытием дроссельных заслонок. Привод дроссельных заслонок — механический, тросовый. Карбюраторы имеют сбалансированную поплавковую камеру, систему отвода картерных газов, подогрев зоны дроссельной заслонки первой камеры, пусковое устройство с ручным управлением, электромагнитный запорный клапан холостого хода. Двигатель -21081 комплектуется карбюратором 21081-1107010, двигатель -2108 — карбюратором 2108-1107010, двигатель -21083 — карбюратором 21083-1107010. Эти карбюраторы конструктивно сходны и различаются только проходными сечениями жиклеров.

Топливо подается в карбюратор через сетчатый фильтр и игольчатый клапан. Последний поддерживает в поплавковой камере заданный уровень топлива.

Поплавковая камера — двухсекционная (такая конструкция уменьшает влияние колебаний уровня топлива на работу двигателя при поворотах и кренах автомобиля). Из поплавковой камеры топливо поступает через главные топливные жиклеры (первой и второй камер) в эмульсионные колодцы, где смешивается с воздухом, проходящим через калиброванные отверстия в верхней части эмульсионных трубок (главные воздушные жиклеры). Через распылители топливно-воздушная эмульсия попадает в малые и большие диффузоры карбюратора.

Система холостого хода отбирает топливо из эмульсионного колодца, после главного топливного жиклера первой камеры. Топливо проходит через жиклер холостого хода (конструктивно объединенный с электромагнитным запорным клапаном холостого хода), после чего смешивается с воздухом из канала от воздушного жиклера холостого хода и из расширяющейся части диффузора (для устойчивой работы при переходе на режим холостого хода). Образовавшаяся эмульсия подается под дроссельную заслонку через отверстие, перекрываемое винтом «качества». Винтом «количества» (числа оборотов) регулируется величина открытия дроссельной заслонки первой камеры на холостом ходу.

При частичном открытии дроссельной заслонки первой камеры (до включения в работу главной дозирующей системы) топливовоздушная смесь поступает в камеру через вертикальную щель, находящуюся на уровне дроссельной заслонки в закрытом положении; при частичном открытии дроссельной заслонки второй камеры — через отверстие, находящееся чуть выше дроссельной заслонки (второй камеры) в закрытом положении.

Экономайзер мощностных режимов включается в работу при значительном открытии дроссельных заслонок. Топливо забирается из поплавковой камеры через шариковый клапан. Пока диафрагма экономайзера удерживается разрежением во впускном коллекторе, клапан закрыт. Когда дроссельные заслонки открываются, разрежение за ними падает и клапан начинает пропускать топливо, которое поступает через жиклер экономайзера в эмульсионный колодец в обход главного жиклера, обогащая смесь.

Эконостат обеспечивает дополнительное поступление топлива непосредственно из поплавковой камеры (через жиклер эконостата и систему трубок) во вторую камеру. Эконостат включается в работу на режимах максимальной мощности, дополнительно обогащая рабочую смесь.

Ускорительный насос — диафрагменного типа, с механическим приводом от оси дроссельной заслонки первой камеры через профильный кулачок. При открытии дроссельной заслонки кулачок воздействует на рычаг, который, в свою очередь, воздействует на диафрагму. Порция топлива через распылители впрыскивается в камеры карбюратора, обогащая горючую смесь на режимах разгона. Насос снабжен двумя шариковыми клапанами: обратный клапан расположен в канале, связывающем поплавковую камеру с полостью ускорительного насоса; он открывается при ее заполнении топливом (педаль «газа» отпущена, и возвратная пружина отводит диафрагму назад), закрывается — при нагнетании топлива. Другой клапан расположен в распылителе; он открывается под давлением нагнетаемого топлива и закрывается под действием собственного веса, как только подача топлива прекращается. Это предотвращает вытекание топлива из каналов и подсос воздуха. Производительность насоса не регулируется и зависит только от профиля кулачка.

Пусковое устройство служит для обогащения топливовоздушной смеси при запуске холодного двигателя. Оно управляется с места водителя рукояткой «подсоса», через тягу. При вытягивании рукоятки до упора трехплечий рычаг управления воздушной заслонкой, поворачиваясь на оси, профильным пазом воздействует на рычаг воздушной заслонки, закрывая ее. При этом наружным профилем (в нижней части) он воздействует на рычаг управления дроссельной заслонкой первой камеры, приоткрывая ее на пусковой зазор С (его величина регулируется винтом на рычаге). После начала работы двигателя разрежение во впускном коллекторе возрастает; оно передается в полость пускового устройства. Под действием разрежения диафрагма пускового устройства, преодолевая сопротивление возвратной пружины, через шток приоткрывает воздушную заслонку на пусковой зазор В (его величина регулируется винтом на крышке пускового устройства). При утапливании рукоятки управления воздушной заслонкой зазоры С и В уменьшаются, их величина при частично утопленной рукоятке зависит от профилей трехплечего рычага (его выреза и наружного профиля) и регулировке не подлежит. Если вытянута рукоятка управления воздушной заслонкой, то при нажатии педали «газа» будет открываться только дроссельная заслонка первой камеры, дроссельная заслонка второй камеры при этом блокируется рычагом управления воздушной заслонкой. Это предотвращает рывки и провалы при движении с непрогретым двигателем («на подсосе»).

Экономайзер принудительного холостого хода состоит из датчика-винта, электромагнитного запорного клапана и блока управления. Электромагнитный клапан перекрывает подачу топлива в систему холостого хода и переходную систему первой камеры. Нормальное состояние клапана (напряжение не подается) — закрытое. Он открывается при нажатии педали «газа», а также при числе оборотов коленчатого вала 1900 мин -1 и ниже. Клапан закрывается, если педаль «газа» отпущена (датчик-винт замкнут на массу) и обороты двигателя превышают 2100 мин -1 , а также при выключении зажигания, что предотвращает работу двигателя с выключенным зажиганием (дизелинг).

Приготовленная в карбюраторе смесь попадает в цилиндры двигателя через впускной коллектор. Он отлит из алюминиевого сплава и крепится к двигателю на шпильках через термостойкие прокладки. Впускной коллектор двигателя -21083 отличается от коллектора двигателей -2108 и -21081 увеличенным диаметром каналов. Соответственно отличаются и их прокладки.

Тарировочные данные карбюраторов

Параметры 2108-1107010 21081-1107010 21083-1107010
Первая камера Вторая камера Первая камера Вторая камера Первая камера Вторая камера
Диаметр смесительной камеры, мм 32 32 32 32 32 32
Диаметр диффузора, мм 21 23 21 23 21 23
Главная дозирующая система:
маркировка топливного жиклера 97,5 97,5 95 97,5 95 97,5
маркировка воздушного жиклера 165 125 165 135 155 125
Тип эмульсионной трубки 23 ZC 23 ZC 23 ZC
Система холостого хода и переходная система
первой камеры: маркировка топливного жиклера 42* 40* 40*
маркировка воздушного жиклера 170 170 170
Переходная система второй камеры:
маркировка топливного жиклера 50 50 50
маркировка воздушного жиклера 120 120 120
Эконостат:
условный расход топливного жиклера 60 70 70
Экономайзер мощностных режимов:
маркировка топливного жиклера 40 40 40
усилие сжатия пружины при длине 9,5 мм, Н 1,5±10 % 1,5±10 % 1,5±10 %
Ускорительный насос:
маркировка распылителя 35 40 35 40 35 40
подача топлива за 10 циклов (суммарная для обеих камер), см3 11,5 11,5 11,5
маркировка кулачка 7 4 7
Пусковые зазоры:
воздушной заслонки (зазор В), мм 3±0,2 2,7±0,2 2,5±0,2
дроссельной заслонки (зазор С), мм 0,85 1,0 1,1
Диаметр отверстия для вакуумного корректора, мм 1,2 1,2 1,2
Диаметр отверстия игольчатого клапана, мм 1,8 1,8 1,8
Диаметр отверстия перепуска топлива в бак, мм 0,70 0,70 0,70
Диаметр отверстия вентиляции картера двигателя, мм 1,5 1,5 1,5

* Подбирается на заводе при настройке карбюратора.

Что такое карбюратор и в чем его секрет?

В объявлениях о продаже автомобиля можно встретить немало предложений неновых, но вполне приличных машин в нормальном состоянии. Как говорится, «ездить и ездить». Но вот незадача – на выбранной машине установлен карбюратор. Довольно старое по своему типу устройство, которое отпугивает современных автолюбителей, особенно молодых людей, своей сложностью, возможным отсутствием ремонтных запчастей и возможными поломками. Покупать ли автомобиль с карбюратором, или найти более современную конструкцию с инжекторной топливной системой – принять решение можно только после того, как разберешься в нюансах работы и конструкции этого устройства.

Что такое карбюратор и для чего он нужен?

Чтобы двигатель внутреннего сгорания работал в оптимальном режиме, необходимо смешать топливо и воздух в определенной пропорции и подать эту смесь в камеру сгорания. Параметры смеси могут меняться в зависимости от режима работы ДВС, потребление топлива – тоже, а значит, необходимо устройство, которое в автоматическом режиме будет всё это делать.

Карбюратор – устройство для смешивания воздуха с топливом. В результате его работы в нужный момент в камеру сгорания двигателя поступает смешанный с воздухом распыленный бензин, готовый к воспламенению. Несмотря на то, что карбюратор один на несколько цилиндров, смесь через впускной коллектор всегда попадает в нужное место благодаря слаженной системе работы всех элементов ДВС.

Устройство карбюратора

До сегодняшних дней к нам добрались в основном поплавковые модели – самые последние и максимально усовершенствованные. Так что на большинстве автомобилей можно встретить именно их.

Устройство поплавкового карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов.

  1. Поплавковая камера, которая отвечает за поддержание определенного уровня топлива.
  2. Поплавок с запорной иглой, предназначенный для автоматического дозирования уровня топлива в поплавковой камере.
  3. Смесительная камера, в которой происходит основное смешивание распыленного (мелкодисперсного) топлива и воздуха
  4. Диффузор – суженный участок, проходя через который воздушный поток ускоряет свое движение.
  5. Распылитель с жиклером, соединяющий поплавковую и смесительную камеры, через который проходит топливо прямо к диффузору.
  6. Дроссельная заслонка – регулирует поток смеси, поступающий в цилиндры.
  7. Воздушная заслонка – регулирует поток воздуха, поступающий в карбюратор. Благодаря ей можно сделать смесь «бедной», нормальной или «обогащенной». Схема зависимости мощности от количества воздуха в топливной смеси

Из схемы видно, что нормальная смесь — это когда воздуха в примерно в 15 раз больше чем топлива. При таких условиях будет полное сгорание бензина и максимальная мощность.

  • Система холостого хода – подает топливо в обход смесительной камеры, когда дроссельная заслонка полностью закрыта. По специальным каналам бензин и воздух проходят в задроссельное пространство.
  • Экономайзеры и эконостаты – устройства для дополнительной подачи топлива, когда двигатель работает на максимальных нагрузках. При этом экономайзеры имеют принудительное управление, а эконостаты работают от разрежения воздуха.
  • Подсос топлива – система принудительного обогащения топливной смеси. Потянув за рычаг, водитель приоткрывал дроссельную заслонку, в результате чего воздух интенсивней проходил через смесительную камеру и забирал большее количество топлива. Получается обогащенная смесь, удобная для запуска холодного двигателя.
  • Принцип работы карбюратора

    Посмотрев видео, ниже, Вы наглядно увидите устройство и принцип работы карбюратора на разных режимах работы. Видео хоть и старенькое, но актуальное по сей день. Не поленитесь и досмотрите до конца, если хотите полностью разобраться в теме.

    Ну а ниже подытожим — работа всех поплавковых карбюраторов осуществляется по типичной схеме.

    1. В поплавковую камеру через топливную магистраль из бака закачивается бензин на нужный уровень, который регулируется и поддерживается поплавком и запорной иглой.
    2. Распылитель, находящийся в нижней части поплавковой камеры, с помощью жиклера передает строго дозированную порцию топлива в смесительную камеру. Одновременно поток топлива распыляется для лучшего перемешивания с воздухом и сгорания.
    3. Топливо из распылителя рассеивается над диффузором, который предназначен для создания быстрого потока воздуха и лучшего его смешивания с уже распыленным бензином.
    4. Смесь топлива и воздуха поступает к дроссельной заслонке, которая напрямую связана с педалью газа. Чем больше топлива нужно двигателю, тем больше открыта заслонка и тем активней работает карбюратор.
    5. Из карбюратора топливно-воздушная смесь проходит через впускной коллектор к тому цилиндру, в котором в данный момент опускается поршень с одновременным открытием впускного клапана.
    6. Поршень работает как насос, втягивая уже приготовленную в карбюраторе смесь.

    Несмотря на довольно простой принцип работы, хорошо настроенный карбюратор обеспечивает отличную отдачу мощности двигателем, неплохую экономию топлива и надежность системы.

    Типы карбюраторов

    Предшественниками уже рассмотренного поплавкового карбюратора были мембранно-игольчатый и барботажный. Это уже устаревшие конструкции, которые сегодня и не встретишь на машинах повседневного использования (а вот на «олдкарах» эти редкости еще есть).

    Мембранно-игольчатый карбюратор состоит из нескольких камер, разделенных мембранами. Мембраны опираются на пружины заданной жесткости и соединены между собой штоком. Мембранные камеры имеют выход в камеру смешивания, а также соединены с каналом подачи топлива. Движение штока приводило в действие мембраны камер, заставляя их качать топливо в полость смешивания. Да, система несколько громоздкая и медленно реагирующая на изменение режима работы двигателя, но при этом надежная до такой степени, что устанавливалась на авиационные двигатели.

    Схема мембранно-игольчатого карбюратора

    Барботажный карбюратор – первая конструкция и первая попытка создать подобное устройство. Представлял собой глухую крышку, которая накрывала бензобак на некотором расстоянии от топлива. К крышке подводились два патрубка: один входной для воздуха, второй к двигателю. Воздух, проходя под крышкой, насыщался парами бензина и в таком виде направлялся в камеру сгорания. Это первое устройство, которое рассчитано на работу с испарениями топлива.

    Классификация других типов карбюраторов зависит от особенностей конструкции. По сечению распылителя различают устройства с постоянным разрежением (модели производства Японии с высочайшими эксплуатационными характеристиками), с постоянным сечением распылителя (карбюраторы производства СССР и РФ) и с золотниковым дросселированием (горизонтальные карбюраторы, предназначенные в основном для мототехники).

    По направлению движения готовой смеси различают конструкции с горизонтальным и вертикальным потоком (из последних самой эффективной оказалась система с нисходящим потоком).

    Поплавковые карбюраторы могут иметь одну или несколько смесительных камер. Однокамерные устройства были в ходу до 1960-х годов, пока развитие двигателей не потребовало увеличения пропускной способности карбюратора.

    Создание многокамерных карбюраторов с несколькими дроссельными заслонками позволило решить эту проблему. Появились разновидности: карбюраторы с одновременным открытием двух дроссельных заслонок, от каждой из которых питались определенные цилиндры, и карбюраторы с последовательным открытием двух заслонок, которые подключались на весь двигатель и работали в соответствии с его режимом.

    По мере того, как росла мощность двигателей, развивались и карбюраторы. Появились трех- и четырехкамерные виды, на автомобиль устанавливалось несколько карбюраторов, настраивались различные варианты приготовления топливной смеси (например, в одной камере делалась переобогащенная смесь, в двух других – обедненная).

    Преимущества и недостатки карбюраторов

    Про ужасы вечного ремонта карбюратора не слышал только глухой. А что на самом деле? Какие же плюсы у этого устройства и есть ли смысл вообще с ним иметь дело? Как ни странно прозвучит это в наш технологичный век, но карбюратор имеет несколько серьезных преимуществ.

    1. Простота конструкции. Нет, речь не о том, что это очень уж простой механизм. Но по сравнению с электронной начинкой сегодняшних автомобилей, карбюратор на порядок проще для ремонта, обслуживания и даже эксплуатации. В большинстве карбюраторов нет никакой электроники, только механические устройства, а значит, человек с «прямыми руками» может и сам заниматься его ремонтом и обслуживанием. Об этом хорошо помнит «старая гвардия» — наши родители, привыкшие копаться в своих «ненаглядных» Жигулях и Запорожцах.
    2. Ремонтопригодность. Всё, что ломается в карбюраторе, можно починить без «лишней крови». Необходимые запчасти можно купить (есть производители, до сих пор выпускающие ремкомплекты. А почему бы и нет?).
    3. При работе с некачественным топливом карбюратор оказывается гораздо живучей и стабильней, чем инжектор. И вообще, он не слишком требователен к чистоте, а если и засоряется, то подлежит простой чистке в домашних («гаражных») условиях.
    4. Небольшое количество воды, попавшее в карбюратор, не причинит ему вреда, в отличие от инжектора. Правда, со временем он потребует чистки и калибровки.
    5. И, наконец, карбюратор не требует подключения к электросети, датчикам, процессору и прочим «радостям» цивилизации. Он работает исключительно от энергии всасываемого двигателем воздуха, а значит, был оптимальным вариантом для установки на старые автомобили, где вообще не было электроники.

    Но есть и недостатки иза которых карбюраторные автомобили в конце концов сошли с мировой арены автомобилестроения.

    1. Технологии требовали систему подачи топлива с гибкой подстройкой, а не с постоянными параметрами, чтобы минимизировать потребление топлива (которое раньше никто особо не считал). Поэтому на смену карбюратору пришла инжекторная система, которая до сих пор развивается и совершенствуется.
    2. Второй значительный минус – зависимость карбюратора от погодных условий. В холодное время года внутри собирается конденсат, мешающий работе, в зимний период есть риск обледенения внутренней части. При этом летняя жара тоже не дает ему работать стабильно из-за активного испарения – начинаются сбои в подаче смеси.
    3. Ну и третий недостаток — это значительно ниже экологические показатели, по сравнению с инжектором. В современной борьбе за экологию карбюраторные автомобили просто не выдерживают никакой критики, так как вредные выбросы у них значительно выше.

    Основные неисправности карбюраторов и их причины

    Неисправности в карбюраторе отражаются на режиме работы двигателя, и именно по нему можно определить, что с системой подачи топлива не всё нормально.

    1. Тяжело запускается непрогретый двигатель – скорей всего, проблемы в регулировке дроссельной заслонки. Необходимо отрегулировать привод заслонки, чтобы при вытянутом подсосе она полностью закрывалась, либо отрегулировать пусковые зазоры.
    2. Непрогретый двигатель заводится и сразу глохнет при полностью вытянутом подсосе – проблема опять-таки в приводе дроссельной заслонки. Либо неправильно отрегулированы зазоры, либо не работает телескопическая тяга и заслонка не открывается.
    3. Прогретый двигатель сложно запускается – не отрегулирован уровень топлива в поплавковой камере, вышел из строя поплавковый механизм или клапанная игла, в результате чего уровень топлива выше нормы.
    4. Неустойчивая работа двигателя на холостых оборотах – причин может быть несколько, и основная это регулировка системы холостого хода. Другие причины – не работает привод эконостата холостого хода или не срабатывает запорный клапан, засорились жиклеры, идет подсос воздуха, ненормально работает поплавок в поплавковой камере
    5. При открытии дроссельной заслонки нет прироста мощности – слишком обогащенная или обедненная смесь из-за негерметичной фиксации распылителя ускорительного насоса.
    6. Низкая динамика разгона – недостаток топлива из-за обедненной смеси или отключения вторичной камеры.

    Заключение

    Несмотря на свою несколько громоздкую конструкцию, карбюраторы верой и правдой служат владельцам старых автомобилей. И, возможно, ремонт и чистка, которую автолюбители делают самостоятельно, обходится в разы дешевле, чем промывка форсунок, к которой вынуждены прибегать владельцы инжекторных автомобилей.

    Покупать ли машину, если на ней установлен карбюратор? Если судить по схеме работы, он далеко не самое слабое звено в автомобиле, и может долгое время вообще не тревожить никакими поломками. Так что карбюраторы, хоть и устарели, но всё еще готовы послужить тем, кто ценит простоту и надежность.

    Принцип действия карбюратора

    В основе принципа действия любого карбюратора лежит пульверизационный эффект диффузора. Диффузор – это не просто труба особой формы. Он работает следующим образом. Если воздух протекает по обыкновенной трубе с параллельными стенками, то очевидно. что его давление и скорость остаются постоянными на протяжении ее длины. Если где-нибудь в трубе сделать сужение, характеристики течения воздуха изменится: в минимальном сечении трубы скорость воздушного потока возрастет, а давление при этом упадет. Таким образом, в минимальном сечении трубы образуется небольшое разрежение. Как раз это и есть диффузор – труба с сужением. Для улучшения течения газа сужение выполняется существенно большим по отношению к максимальному сечению, а после сужения сечение постепенно увеличивается.

    Поплавковый механизм Править

    Если вы хотите понять принцип действия поплавкового регулятора уровня, пойдите в туалет и снимите крышку со сливного бачка. Внутри вы обнаружите поплавок, рычаг, соединяющий его с клапаном, и бак, заполненный водой. Откройте слив воды, и уровень воды упадет, а вместе с ним опустится поплавок, За счет этого откроется клапан, и бак начнет заполняться водой до тех пор, пока поднимающийся поплавок снова не закроет клапан. Поплавковый механизм карбюратора выполняет туже самую функцию, поддерживая постоянный уровень топлива.

    Дроссель Править

    Если повернуть ось, то пластина (если она находится в соответствующем угловом положении) допускает прохождение воздуха и образует небольшое сужение. Такое устройство называется дроссельной заслонкой мотылькового типа и используется на карбюраторах с постоянным сечением диффузора.

    Другой способ ограничения количества поступающего воздуха заключается в применении подвижной дроссельной заслонки (или дросселя), расположенной в вертикальной расточке диффузора. Дроссель может перемещаться по расточке вверх и вниз, эффективно изменяя сечение диффузора так, что поток воздуха через карбюратор частично или полностью перекрывается. Таким образом, изменяется пропускная способность карбюратора. Такое устройство называется дроссельным золотником и применяется на карбюраторах шиберного типа (параграф 4). Комбинация двух вышеописанных устройств используется на карбюраторах постоянного разрежения (параграф 5). Карбюраторы как шиберного типа, так и постоянного разрежения относят к карбюраторам с переменным сечением.

    Управление дроссельной заслонкой обеспечивается при помощи троса, который связывает дроссельную заслонку или золотник с ручкой газа, расположенной на руле. Возвратная пружина установлена для автоматического закрытия дроссельной заслонки при отпускании ручки газа.

    Пусковое устройство (для запуска холодного двигателя)(“подсос”) Править

    Для обеспечения успешного сгорания топливо в поступающей смеси должно быть полностью в испаренном виде. При холодном двигателе топливо конденсируется на его холодных металлических элементах, и, следовательно, оно больше не испаряется, в результате чего двигатель очень трудно запустить.

    Чтобы компенсировать это приходится делать поступающую смесь значительно более богатой, чем при нормальной работе. Этого можно достичь тремя способами. Во-первых, вручную нажимая на утопитель поплавка для увеличения количества топлива в поплавковой камере; во-вторых, перекрывая (“дросселируя”) диффузор, и в-третьих, подавая больше топлива через отдельную пусковую систему (“обогатитель”). Обычно все системы называются “подсосом”, но, строго говоря, под это определение попадает только вторая система, которая работает за счет перекрытия диффузора.

    После запуска двигателя он начинает прогреваться и, в конечном счете, необходимо будет выключить пусковое устройство, чтобы предотвратить переизбыток топлива в смеси, поступающей в двигатель.

    Утопитель поплавка Править

    Заслонка Править

    Пусковое устройство Править

    Современное пусковое устройство

    Принцип действия этой системы аналогичен тому, по которому работает заслонка, но в данном случае для обогащения смеси используется отдельная система карбюратора. Рычаг или кнопка чаще всего при помощи троса, но иногда и непосредственно связаны с плунжером, включающим и отключающим пусковое устройство. При открытом пусковом устройстве и прокручивании вала двигателя (с прикрытой дроссельной заслонкой) воздух поступает в канал, минующий диффузор карбюратора, и смешивается с топливом, подающимся через жиклер пускового устройства из поплавковой камеры. Затем топпивовоздушная смесь подается в двигатель через канал карбюратора, расположенный за диффузором и дроссельной заслонкой.

    Плунжер связан с осью дроссельной заслонки (хотя на некоторых карбюраторах он может быть связан с ограничителем дроссельной заслонки); это означает, что при включении пускового устройства дроссельная заслонка также немного приоткрывается. Главным образом, это связано с тем, что двигатель плохо работает при обогащенных смесях на холостом ходу, если не поднять частоту вращения до 2000 – 3000 об/мин. Кроме того, это способствует улучшению циркуляции смазочного масла. На ранних и упрощенных вариантах системы непосредственная связь с дроссельной заслонкой отсутствует, и при включенном пусковом устройстве на работающем двигателе ее функцию приходится выполнять вручную.

    Автоматический обогатитель Править

    Хотя для работы карбюратора автоматический обогатитель не столь существенен, он все больше становится отличительной чертой мопедов и скутеров.

    Самое простое устройство, применяемое на некоторых мопедных карбюраторах, представляет собой небольшой кулачок, который отключает пусковое устройство при определенной степени открытия дроссельной заслонки.

    На более сложных моделях установлен обогатитель с термочувствительным элементом, но он срабатывает не от температуры двигателя, а от температуры самого пускового устройства, которое снабжено электрическим нагревательным элементом. При холодном пусковом устройстве оно остается открытым, тем самым обогащая смесь. После запуска двигателя к нагревательному элементу пускового устройства начинает поступать ток. Данное устройство может быть оснащено биметаллической пластиной, изгибающейся при нагреве, или камерой, заполненной парафином, расширяющимся при нагреве: они, в свою очередь, воздействуют на плунжер, постепенно закрывая пусковое устройство по мере прогрева двигателя и самого пускового устройства

    Система холостого хода Править

    Резреэ карбюраторе шиберного типа, демонстрирующий работу системы холостого хода

    Для работы карбюратора в широком диапазоне частот вращения двигателя одной только главной системы, в которой используется жиклер постоянного размера, будет недостаточно.

    При очень низких скоростях вращения разрежения в диффузоре для подачи необходимого количества топлива через жиклер недостаточно; двигатель будет работать с перебоями и в итоге заглохнет. Для того, чтобы компенсировать это, в конструкцию карбюратора включена отдельная система для работы двигателя с низкими частотами вращения (от полного закрытия до 1/8 открытия дроссельной заслонки). Эта система носит название системы холостого хода.

    Во многом аналогичным пусковому устройству образом, описанным выше, воздух поступает в обводной канаk, минуя диффузор, и перемешивается с топливом, поступающим из поплавковой камеры через жиклер холостого хода. Затем топпивовоздушная смесь поступает в двигатель по каналу карбюратора, расположенному за диффузором и дроссельной заслонкой. Поскольку даже при закрытой дроссельной заслонке всегда существует небольшая щель между дросселем и диффузором, то присутствует небольшой пульверизационный эффект, использующийся для подачи получаемой смеси в двигатель. По мере открытия дроссельной заслонки этот эффект исчезает, и начинают функционировать другие системы.

    Срез дросселя(карбюраторы шиберного типа) Править

    Если нижнюю часть дросселя сделать плоской, то в промежутке между функционированием системы холостого хода и главной системы существовал бы “провал”. Для предотвращения этого сторона дросселя, обращенная к воздушному фильтру. обрабатывается под углом, усиливающим пульверизационный эффект между ним и диффузором при частичных (от 1/8 до 1/4) открытиях дросселя,

    Переходная система холостого хода (карбюраторы постоянного разрежения и с постоянным сечением диффузора) Править

    Система переходных отверстий холостого хода керборетора постоянного резрежения

    Эта система выполняет те же функции, что и срез на дросселе шиберного карбюратора. В данном случае она дозирует количество топлива от режимов холостого хода до малого открытия дроссельной заслонки. В системе холостого хода есть два дополнительных выходных канала, которые называются переходными, и расположены таким образом, что при закрытии дроссельной заслонки они оказываются перед ее гранью. При небольшой степени открытия дроссельной заслонки ее край по очереди проходит каждый канал, допуская тем самым прохождение воздушного потока, подхватывающего истекающее топливо.

    Дозирующая (конусная) игла (карбюраторы постоянного разрежения и шиберного типа) Править

    Для обеспечения переменного состава топливовоздушной смеси при открытии дроссельной заслонки от 1/4 до 3/4 в нижней части дроссельного золотника устанавливается конусная игла, которая вдвигается в калиброванное отверстие распылителя внизу диффузора карбюратора. Иногда распылитель размещается заподлицо с диффузором, хотя чаше всего он слегка выступает. Причина, по которой он выполняется выступающим, состоит в том, чтобы создать местный источник завихрений, способствующий рассеиванию и дроблению топлива в воздухе. Главный жиклер, установленный в корпусе распылителя, подобран так, чтобы размер его отверстия соответствовал полному открытию дросселя. При открытии дросселя в пределах от 1 /4 до 3/4, пока игла находится в распылителе, кольцевой зазор между иглой и стенкой распылителя значительно меньше, чем размер отверстия главного жиклера, и, следовательно, функцию управления расходом топлива осуществляют игла и распылитель. По мере того, как дроссельная заслонка открывается, и поднимается игла, кольцевой зазор увеличивается за счет ее конусности, и распылитель пропускает большее количество топлива, таким образом подстраиваясь под увеличение нагрузки.

    Главная система Править

    Карбюратор шиберного типа

    Карбюратор постоянного разрежения

    На карбюраторах постоянного разрежения и шиберного типа, при открытии дросселя приблизительно от 3/4 до полного открытия кольцевой зазор между иглой и распылителем превышает размер отверстия главного жиклера, и функции управления переходят к главному жиклеру. Ряд карбюраторов, где это оправдано, оснащается двухконтурной главной системой, состоящей из первичной и вторичной главной системы. Первичная главная система задействована с момента подъема золотника или поршня, в то время как управление вторичной главной системой осуществляется при помощи иглы, двигающейся в распылитель, так же, как в главной системе обыкновенного карбюратора. Карбюраторы с постоянным сечением диффузора из-за отсутствия дозирующей иглы часто оснащаются главными системами, число которых насчитывает от двух и более. Существует только несколько карбюраторов постоянного разрежения с двумя главными системами. Иногда дополнительную главную систему получают за счет использования так называемого “эконостата”.

    Эмульсионная трубка Править

    На многих (но не но всех) карбюраторах, если тщательно обследовать распылитель, можно увидеть, что в стенке распылителя имеется множество маленьких отверстий. Также можно обратить внимание, что между стенкой распылителя и каналом, в котором он размещается, существует свободное пространство. Эту часть распылителя называют эмульсионной трубкой. Небольшой воздушный канал, называемый основным воздушным каналом, расположенный на входе в диффузор карбюратора, направляет небольшое количество воздуха, дозируемого воздушным жиклером, в камеру, образованную зазором между распылителем и корпусом карбюратора. Маленькие отверстия способствуют предварительному перемешиванию (или эмульсированию) топлива и воздуха, таким образом, повышая эффективность перемешивания и испарения топлива. Во многих случаях такие системы включают в себя систему холостого хода.

    Ускорительный насос (карбюраторы с постоянным сечением диффузора и карбюраторы шиберного типа) Править

    Применение ускорительного насоса решает характерную проблему внезапного обеднения смеси при резком открытии дроссельной заслонки. В заданный момент насос обогащает смесь необходимым количеством топлива, которое определяется степенью открытия дроссельной заслонки. На некоторых карбюраторах привод насоса осуществляется при помощи рычага, перемещающегося по дроссельному золотнику, а в других конструкциях на тягу воздействует кулачок, закрепленный на оси дроссельной заслонки. В обоих случаях далее рычаг или тяга воздействуют на диафрагменный насос, который впрыскивает или распыляет отмеренное количество топлива в диффузор.

    Отсечной воздушный клапан (карбюраторы постоянного разрежения и шиберного типа) Править

    Многие карбюраторы оснащаются отсечными воздушными клапанами, предотвращающими “последующие вспышки” – взрывы в выпускной системе, иногда происходящие при торможении двигателем после закрытия дроссельной заслонки. Это происходит из-за обеднения смеси при закрытии дроссельной заслонки.

    Система подогрева карбюратора (карбюраторы постоянного разрежения и шиберного типа) Править

    Многие карбюраторы оснащаются нагревательным устройством, предотвращающим “обледенение” карбюратора. Обледенение может происходить в условиях высокой влажности и низких температур воздуха (около 4-5 С°). Оно вызвано эффектом охлаждения при испарении топлива находящейся в воздухе воды. Это может привести к образованию в диффузоре карбюратора льда, который способен перекрыть выходные отверстия холостого хода, вызывая остановку или перебои в работе двигателя, а также заклинить дроссельную заслонку на карбюраторах постоянного резрежения.

    Нефтеперерабатывающие компании добавляют в бензин присадки против обледенения, но их не всегда бывает достаточно для его предотвращения. Для гарантированного предотвращения этого эффекта некоторые изготовители снабжают карбюраторы системой подогрева, как в виде небольших электронагревательных элементов в каждом карбюраторе, так и за счет циркуляции охлаждающей жидкости двигателя вокруг карбюратора.

    Датчик положения дроссельной заслонки (карбюраторы постоянного разрежения и шиберного типа) Править

    Современные мотоциклы оснащаются датчиком положения дроссельной заслонки (TPS). Они не влияют на процессы дозирования топлива, а используются для предоставления информации о положении и перемещении(т.е. открытии или закрытии] дроссельной заслонки и скорости этого перемещения (насколько быстро открывается дроссельная заслонка) блоку управления бесконтактной системой зажигания для оптимизации угла опережения зажигания.

    Как отрегулировать холостой ход карбюратора

    Хотя карбюраторы успели устареть еще в конце ХХ века, это не означает, что карбюраторные машины стоит списать в веке двадцать первом. Хотя отсутствие возможности автоматического поддержания состава топливовоздушной смеси у них и разнообразит быт владельца необходимостью регулировки время от времени.

    Карбюратор – это пульверизатор, распыляющий топливо в воздушный поток, проходящий сквозь него. При этом количество подаваемого горючего зависит от трех факторов:

    • скорости воздушного потока;
    • сечения топливных каналов;
    • и уровня топлива в поплавковой камере.

    Чем быстрее поток воздуха, тем больше разрежение, втягивающее бензин. Чем больше сечение, тем больше его засосет. Подача топлива зависит и от уровня топлива. Регулировки карбюратора – это обеспечение соответствия трех этих параметров заданному составу смеси. Отсюда же и причина характерных проблем с холостым ходом у карбюраторных моторов: при нарушениях смесеобразования мотор работает с перебоями, троит (слишком богатая или бедная смесь), глохнет (грубое нарушение регулировок, забитые жиклеры), не снижается до нормы (подсос воздуха).

    На автомобильных карбюраторах рабочие режимы определены сечением диффузора и набором жиклеров, произвольная регулировка там невозможна. При настройке карбюратора можно только менять жиклеры. В то же время регулировка холостого хода карбюратора выполняется винтами: сечение каналов в системе ХХ минимальное, и даже небольшие отклонения размеров сильно повлияют на работу двигателя. К тому же на режиме холостого хода условия для сгорания топливовоздушной смеси худшие (минимальная подача смеси в цилиндр), что влияет на экологичность: не зря CO/CH замеряются на холостом ходу.

    Органы настройки на карбюраторах семейства «Озон»

    Холостой ход карбюратора 2107, как и прочих автомобилей «жигулевского» семейства, управляется двумя винтами на нижней части корпуса.

    В карбюраторах этого типа топливо в систему холостого хода забирается через жиклер холостого хода и сразу смешивается с воздухом через воздушный жиклер ХХ. Полученная эмульсия строго заданного состава подается во впуск по каналам, где установлены два регулировочных винта: винт количества (1) и винт качества (2). Первый ограничивает количество эмульсии, а второй управляет смешением ее с добавочным воздухом из отдельного канала.
    Оба винта управляют составом смеси, получающейся после распыления эмульсии карбюратором. Такая не совсем понятная работа системы холостого хода связана с тем, что в «Озоне» она связана с экономайзером, перекрывающим подачу топлива на принудительном холостом ходу (торможение двигателем), и винт количества непосредственно перемещает шток клапана экономайзера.

    Органы управления в карбюраторах «Солекс»

    На переднеприводных ВАЗах карбюратор значительно совершеннее, причем это касается не только холостого хода. Сама настройка холостого хода здесь понятнее по принципу действия органов управления.

    Винт количества (1) здесь является упором привода дроссельной заслонки в первой камере, прямо управляет количеством воздуха, проходящего через карбюратор на холостом ходу. Топливо же, проходя через топливный жиклер, запираемый электроклапаном (экономайзер принудительного холостого хода имеет электронное управление), образует эмульсию, подающуюся в канал, управляемый винтом качества (2).

    Общие принципы настройки карбюратора

    Перед тем как отрегулировать холостой ход, обеспечьте исправную работу и топливной системы, и системы зажигания – момент зажигания выставляем по стробоскопу, а карбюратор прочищаем, если в нем уже заметны отложения. Сечение топливных и воздушных каналов мало, и загрязнения в них наиболее ощутимы. Нужно быть уверенным в отсутствии подсосов воздуха через растрескавшиеся вакуумные патрубки или усилитель тормозов, на «Солексах» же общеизвестная болезнь – это коробление привалочной плоскости карбюратора к коллектору, из-за чего подсасывается много воздуха, особенно на холостом ходу.

    Перед регулировкой двигатель прогреваем, так как устойчивая работа холодного мотора обеспечивается пусковой системой. Если отрегулировать холостой ход на холодном моторе, то на рабочей температуре мы получим завышенные обороты ХХ и переобогащенную смесь.

    Нужно обеспечить корректный уровень топлива в поплавковой камере – от него зависит состав смеси на всех режимах работы мотора. К тому же эту регулировку придется выполнять на разобранном карбюраторе, так что ее совмещаем с чисткой.

    Для регулировки уровня снимается верхняя крышка карбюратора, после чего она переворачивается – привалочная плоскость к корпусу должна быть горизонтальна. Существуют несколько способов измерения и регулировки уровня. Мастера-карбюраторщики использовали для «Солексов» вот такой шаблон, который позволял сразу определить, нужно ли подправить уровень, и выставить его безо всяких измерений:

    Прижимая шаблон (4) к прокладке (3), уложенной на крышку карбюратора (2), контролируют зазор между шаблоном и поплавками (1) – он составляет 1 миллиметр. При отклонениях нужный зазор выставляется подгибанием язычка (5), нажимающего на запорную иглу.

    Без шаблона используем линейку или штангенциркуль, выставив уровень верхней грани поплавка 34 мм.

    У «Озонов» при регулировке выставляется полный ход поплавка (9) на уровне 8 мм подгибанием упора (3), а зазор между полностью опущенным поплавком и прокладкой (10) устанавливается в 6,5 мм с помощью язычка (8), нажимающего на иглу (4).

    Кроме того, выполняем начальную регулировку заслонок, в отличие от «Солекса», где винт количества напрямую управляет положением дросселя. Винт упора дросселя первой камеры выворачивается, пока между ним и сектором привода не появляется зазор, затем заворачивается до момента касания и далее еще на 90 градусов (четверть оборота). Винт дросселя второй камеры устанавливается до момента касания, при их правильной регулировке на холостом ходу дроссель в первой камере слегка открыт, а во второй – закрыт (эта камера на холостом ходу полностью отключена).

    У «Солексов» нужно убедиться в правильной затяжке клапана ЭПХХ, на котором установлен жиклер холостого хода. Клапан закручиваем до легкого момента касания жиклером посадочного места. Недотянутый жиклер вызовет отклонение в составе эмульсии, подающейся в систему ХХ, перетягивать же его нельзя: повреждается посадочное место, делая точную регулировку холостого хода невозможной (вторая «фирменная болезнь» карбюраторов переднеприводного семейства).

    Ещё кое-что полезное для Вас:

    Процесс регулировки

    Так как добавить обороты холостого хода или снизить их можно и количеством, и качеством смеси, в регулировке обязательно используются оба винта.
    На «Солексе» сначала грубо устанавливаются требуемые обороты вращением винта количества. Это делать удобно, так как его головка с накаткой выдается в сторону. После этого подстраивается состав смеси на выбранных оборотах вращением винта качества – он выворачивается, пока обороты при этом увеличиваются, и нужно поймать пик, после которого они начнут падать. Поймав эту точку, выставляем слегка повышенные (около 900 об/мин) обороты холостого хода винтом количества, а затем слегка закручиваем винт качества по часовой стрелке, так как убавить обороты холостого хода на карбюраторе до 800 об/мин в конце настройки — значит обеспечить оптимальный состав смеси. Таким способом опытный карбюраторщик уложится в норматив СО/СН и без газоанализатора, если же сразу сбросить обороты винтом количества, то смесь «уйдет».

    На «Озоне» принцип регулировки тот же, хотя управлять винтом количества и труднее.

    Окончательная проверка правильности регулировки проводится на ходу плавным (чтобы максимально исключить влияние ускорительного насоса) ускорением на второй передаче с холостого хода. Машина должна набирать обороты уверенно, без провала и без хлопков на впуске (бедная смесь) или выпуске (богатая смесь).

    Удобнее настраивать холостой ход с помощью прибора ИКС-1, который найдёте в продаже по цене около 1700 рублей. Это – специальная свеча зажигания, позволяющая через окошко с кварцевым стеклом наблюдать за цветом пламени вспышки в цилиндре. У богатой смеси оттенок пламени от желтого до оранжевого, у бедной – голубой. Ловя винтом качества переход от одного цвета к другому, выставим стехиометрический состав смеси, после чего для уверенной работы на ХХ ее можно слегка обогатить, а для экономии – обеднить. Для карбюраторного мотора лучше выставить слегка обогащенную смесь: на динамику меньше влияют колебания температуры воздуха. Обедненная же смесь зимой, когда плотность воздуха выше, вызовет проблемы с устойчивостью ХХ и ухудшит разгон.

    Характеристика смеси Отношение воздух/топливо Мощность Расход топлива Характерные признаки
    Переобогащенная 0,6-0,8 Падает на 20-25% Увеличивается на 15-25% Черный дым, частые хлопки в глушителе, обильная сажа на свечах
    Богатая 0,8-0,9 Максимальная для данного мотора Увеличивается на 10-15% Нормальная работа, хорошая динамика разгона автомобиля
    Стехиометрическая (идеальная) 1,0 Снижена на 4-5% от максимальной Увеличивается на 4-8% Нормальная работа
    Обедненная 1,05-1,15 Снижена на 5-10% Минимальный расход топлива Нормальная работа, но динамика ухудшается
    Бедная 1,2-1,4 Значительно снижена Увеличивается на 8-12% Хлопки на впуске, перегрев, ухудшение динамики

    Видео: Холостой ход. РЕГУЛИРОВКА НА ПРАКТИКЕ + ТЕОРИЯ.

    Ссылка на основную публикацию
    Adblock
    detector