Система курсовой устойчивости vsc
Autoservice-ryazan.ru

Автомобильный портал

Система курсовой устойчивости vsc

Описание и принцип работы системы курсовой устойчивости ESC

Система курсовой устойчивости ESC – это электрогидравлическая система активной безопасности, главное назначение которой — не дать автомобилю уйти в занос, то есть предотвратить отклонение от заданной траектории движения при резком маневрировании. ESC имеет еще одно название — «система динамической стабилизации». Аббревиатура ESC расшифровывается как Electronic Stability Control — электронный контроль устойчивости (ЭКУ). Система стабилизации — это комплексная система, охватывающая возможности ABS и TCS. Рассмотрим принцип действия системы, ее основные компоненты, а также положительные и отрицательные стороны эксплуатации.

Принцип работы системы

Разберем принцип работы ESC на примере системы курсовой устойчивости ESP (Electronic Stability Programme) от компании Bosch, которая устанавливается на автомобили с 1995 года.

ESC стабилизирует положение автомобиля при заносе

Самое важное для ESP – это правильно определить момент наступления неконтролируемой (аварийной) ситуации. Во время движения система стабилизации непрерывно сопоставляет параметры движения автомобиля и действия водителя. Система начинает работать, если действия человека за рулем становятся отличными от фактических параметров движения машины. Например, резкий поворот руля на большой угол.

Система активной безопасности может стабилизировать движение автомобиля несколькими способами:

  • притормаживанием определенных колес;
  • изменением крутящего момента двигателя;
  • изменением угла поворота передних колес (если установлена система активного рулевого управления);
  • изменением степени демпфирования амортизаторов (если установлена адаптивная подвеска).

Система курсовой устойчивости не дает автомобилю уйти за пределы заданной траектории поворота. Если датчиками фиксируется недостаточная поворачиваемость, то ESP осуществляет притормаживание заднего внутреннего колеса, а также меняет крутящий момент двигателя. Если выявлена избыточная поворачиваемость, то система притормаживает переднее наружнее колесо, а также варьирует крутящий момент.

Чтобы подтормаживать колеса, ESP использует систему ABS, на базе которой она построена. Цикл работы включает три стадии: повышение давления, поддержание давления, сбрасывание давления в тормозной системе.

Крутящий момент двигателя изменяется системой динамической стабилизации следующими способами:

  • отменой переключения передачи в автоматической коробке переключения передач;
  • пропуском впрыска топлива;
  • изменением угла опережения зажигания;
  • изменением угла положения дроссельной заслонки;
  • пропуском зажигания;
  • перераспределением крутящего момента по осям (на автомобилях с полным приводом).

Устройство и основные компоненты

Система курсовой устойчивости – это совокупность более простых систем: ABS (предотвращает блокировку тормозов), EBD (распределяет тормозные усилия), EDS (блокирует дифференциал с помощью электроники), TCS (предотвращает пробуксовку колес).

Компоненты системы курсовой устойчивости: 1 – гидравлический блок с ЭБУ; 2 – датчики частоты вращения колес; 3 ­– датчик угла поворота рулевого колеса; 4 – датчик линейных и угловых ускорений; 5 – электронный блок управления двигателем

Система динамической стабилизации включает в себя набор датчиков, электронный блок управления (ЭБУ) и исполнительное устройство – гидравлический блок.

Датчики отслеживают определенные параметры движения автомобиля и передают их в блок управления. С помощью датчиков ESC оценивает действия человека за рулем, а также параметры движения машины.

Для оценки действий человека за рулем система курсовой устойчивости использует датчики давления в тормозной системе и угла поворота рулевого колеса, а также выключатель стоп-сигнала. Параметры движения автомобиля отслеживают датчики давления в тормозной системе, частоты вращения колес, угловой скорости машины, продольного и поперечного ускорения.

На основании данных, полученных от датчиков, блок управления генерирует управляющие сигналы для исполнительных устройств систем, входящих в состав ESC. Команды от ЭБУ получают:

  • впускные и выпускные клапаны антиблокировочной системы;
  • клапаны высокого давления и переключающие клапаны антипробуксовочной системы;
  • контрольные лампы ABS, ESP и тормозной системы.

При работе ЭБУ взаимодействует с блоком управления автоматической коробки передач, а также с блоком управления двигателем. Блок управления не только принимает сигналы от данных систем, но и формирует для их элементов управляющие воздействия.

Отключение системы ESC

Если система динамической стабилизации «мешает» водителю при управлении автомобилем, то ее можно отключить. Обычно для этих целей есть специальная кнопка на приборной панели. ESC рекомендуется отключать в следующих случаях:

  • при использовании малого запасного колеса (докатки);
  • при использовании колес разного диаметра;
  • при езде по траве, неоднородному льду, бездорожью, песку;
  • при езде с цепями противоскольжения;
  • во время раскачки автомобиля, которая застряла в снегу/грязи;
  • при испытании машины на динамическом стенде.

Преимущества и недостатки системы

Рассмотрим плюсы и минусы использования системы динамической стабилизации. Преимущества ESC:

  • помогает удерживать автомобиль в пределах заданной траектории;
  • предотвращает опрокидывание автомобиля;
  • стабилизация автопоезда;
  • предотвращает столкновения.
  • esc нужно отключать в определенных ситуациях;
  • неэффективна на высоких скоростях и при маленьком радиусе поворота.

Применение

В Канаде, США и странах Европейского союза с 2011 года система курсовой устойчивости обязательно устанавливается на все легковые автомобили. Отметим, что названия системы различаются в зависимости от производителя. Аббревиатура ESC применяется на автомобилях Kia, Hyundai, Honda; ESP (Electronic Stability Programme) – на многих машинах Европы и США; VSC (Vehicle Stability Control) на автомобилях Toyota; система DSC (Dynamic Stability Control) на машинах Land Rover, BMW, Jaguar.

Система динамической стабилизации – это отличный помощник на дороге, особенно для неопытных водителей. Не стоит забывать, что возможности электроники также не безграничны. Система во многих случаях существенно снижает вероятность аварии, однако водителю никогда не стоит терять бдительность.

Maksim0203 › Блог › Система курсовой устойчивости

Система курсовой устойчивости (другое наименование — система динамической стабилизации) предназначена для сохранения устойчивости и управляемости автомобиля за счет заблаговременного определения и устранения критической ситуации. С 2011 года оснащение системой курсовой устойчивости новых легковых автомобилей является обязательным в США, Канаде, странах Евросоюза.

Система позволяет удерживать автомобиль в пределах заданной водителем траектории при различных режимах движения (разгоне, торможении, движении по прямой, в поворотах и при свободном качении).

В зависимости от производителя различают следующие названия системы курсовой устойчивости:
ESP (Electronic Stability Programme) на большинстве автомобилей в Европе и Америке;
ESC (Electronic Stability Control) на автомобилях Honda, Kia, Hyundai;
DSC (Dynamic Stability Control) на автомобилях BMW, Jaguar, Rover;
DTSC (Dynamic Stability Traction Control) на автомобилях Volvo;
VSA (Vehicle Stability Assist) на автомобилях Honda, Acura;
VSC (Vehicle Stability Control) на автомобилях Toyota;
VDC (Vehicle Dynamic Control) на автомобилях Infiniti, Nissan, Subaru.

Устройство и принцип действия системы курсовой устойчивости рассмотрены на примере самой распространенной системы ESP, которая выпускается с 1995 года.Устройство системы курсовой устойчивости
Система курсовой устойчивости является системой активной безопасности более высокого уровня и включает антиблокировочную систему тормозов (ABS), систему распределения тормозных усилий (EBD), электронную блокировку дифференциала (EDS), антипробуксовочную систему (ASR).

Система курсовой устойчивости объединяет входные датчики, блок управления и гидравлический блок в качестве исполнительного устройства.

Входные датчики фиксируют конкретные параметры автомобиля и преобразуют их в электрические сигналы. С помощью датчиков система динамической стабилизации оценивает действия водителя и параметры движения автомобиля.
Используются в оценке действий водителя датчики угла поворота рулевого колеса, давления в тормозной системе, выключатель стоп-сигнала. Оценивают фактические параметры движения датчики частоты вращения колес, продольного ускорения, поперечного ускорения, скорости поворота автомобиля, давления в тормозной системе.

Блок управления системы ESP принимает сигналы от датчиков и формирует управляющие воздействия на исполнительные устройства подконтрольных систем активной безопасности:
впускные и выпускные клапаны системы ABS;
переключающие и клапаны высокого давления системы ASR;
контрольные лампы системы ESP, системы ABS, тормозной системы.

В своей работе блок управления ESP взаимодействует с системой управления двигателем и автоматической коробки передач (через соответствующие блоки). Помимо приема сигналов от этих систем блок управления формирует управляющие воздействия на элементы системы управления двигателем и АКПП.

Для работы системы динамической стабилизации используется гидравлический блок системы ABS/ASR со всеми компонентами.

Принцип работы системы курсовой устойчивости
Определение наступления аварийной ситуации осуществляется путем сравнения действий водителя и параметров движения автомобиля. В случае, когда действия водителя (желаемые параметры движения) отличаются от фактических параметров движения автомобиля, система ESP распознает ситуацию как неконтролируемую и включается в работу.

Стабилизация движения автомобиля с помощью системы курсовой устойчивости может достигаться несколькими способами:
подтормаживанием определенных колес;
изменением крутящего момента двигателя
изменением угла поворота передних колес (при наличии системы активного рулевого управления);
изменением степени демпфирования амортизаторов (при наличии адаптивной подвески) .

Подтормаживание колес производится путем включения в работу соответствующих систем активной безопасности. Работа при этом носит циклический характер: увеличение давления, удержание давления и сброс давления в тормозной системе.

Изменение крутящего момента двигателя в системе ESP может осуществляться несколькими путями:
изменением положения дроссельной заслонки;
пропуском впрыска топлива;
пропуском импульсов зажигания;
изменением угла опережения зажигания;
отменой переключения передачи в АКПП;
перераспределением крутящего момента между осями (при наличии полного привода).

Система, объединяющая систему курсовой устойчивости, рулевое управление и подвеску носит название интегрированной системы управления динамикой автомобиля.

Дополнительные функции системы курсовой устойчивости
В конструкции системы курсовой устойчивости могут быть реализованы следующие дополнительные функции (подсистемы): гидравлический усилитель тормозов, предотвращения опрокидывания, предотвращения столкновения, стабилизации автопоезда, повышения эффективности тормозов при нагреве, удаления влаги с тормозных дисков и и др.
Все перечисленные системы, в основном, не имеют своих конструктивных элементов, а являются программным расширением системы ESP.

Система предотвращения опрокидывания ROP (Roll Over Prevention) стабилизирует движение автомобиля при угрозе опрокидывания. Предотвращение опрокидывания достигается за счет уменьшения поперечного ускорения путем подтормаживания передних колес и снижения крутящего момента двигателя. Дополнительное давление в тормозной системе создается с помощью активного усилителя тормозов.

Система предотвращения столкновения (Braking Guard) может быть реализована в автомобиле, оснащенном адаптивным круиз-контролем. Система предотвращает опасность столкновения с помощью визуальных и звуковых сигналов, а в критической ситуации — путем нагнетания давления в тормозной системе (автоматического включения насоса обратной подачи).

Система стабилизации автопоезда может быть реализована в автомобиле, оборудованным тягово-сцепным устройством. Система предотвращает рыскание прицепа при движении автомобиля, которое достигается за счет торможения колес или снижения крутящего момента.

Система повышения эффективности тормозов при нагреве FBS (Fading Brake Support, другое наименование — Over Boost) предотвращает недостаточное сцепление тормозных колодок с тормозными дисками, возникающее при нагреве, путем дополнительного увеличения давления в тормозном приводе.

Система удаления влаги с тормозных дисков активируется на скорости свыше 50км/ч и включенных стеклоочистителях. Принцип работы системы заключается в кратковременном повышении давления в контуре передних колес, за счет чего тормозные колодки прижимаются к дискам и происходит испарение влаги.

Схема системы курсовой устойчивости ESP (рис. в низу)

1компенсационный бачок
2вакуумный усилитель тормозов
3датчик положения педали тормоза
4датчик давления в тормозной системе
5блок управления
6насос обратной подачи
7аккумулятор давления
8демпфирующая камера
9впускной клапан переднего левого тормозного механизма
10выпускной клапан привода переднего левого тормозного механизма
11впускной клапан привода заднего правого тормозного механизма
12выпускной клапан привода заднего правого тормозного механизма
13впускной клапан привода переднего правого тормозного механизма
14выпускной клапан привода переднего правого тормозного механизма
15впускной клапан привода заднего левого тормозного механизма
16выпускной клапан привода заднего левого тормозного механизма
17передний левый тормозной цилиндр
18датчик частоты вращения переднего левого колеса
19передний правый тормозной цилиндр
20датчик частоты вращения переднего правого колеса
21задний левый тормозной цилиндр
22датчик частоты вращения заднего левого колеса
23задний правый тормозной цилиндр
24датчик частоты вращения заднего правого колеса
25переключающий клапан
26клапан высокого давления
27шина обмена данными

VSC System: что это такое на Toyota и Lexus

Износ протекторов шин, погодные условия, неправильные действия водителя — причины, по которым автомобиль может сорваться в занос. Колеса теряют сцепление с дорожным полотном, при этом заднюю часть авто поперечная сила “выносит” вправо или влево от вектора движения. Резкие движения рулевым колесом, экстренное торможение или выключение сцепления усугубляют ситуацию: машину начинает вращать, при столкновении с препятствием (бордюром, сугробом) или съезде в кювет авто может опрокинуться.

Чтобы избежать подобной ситуации, инженеры японского автопроизводителя Toyota разработали электронную систему, которая считывает показания нескольких датчиков и помогает водителю предотвратить занос автомобиля. Система получила название VSC System.

Читать еще:  Как защитить машину от угона

Что такое VSC System в Toyota и Lexus

VSC System (Vehicle Stability Control) — система курсовой устойчивости автомобиля, которая помогает водителю избежать бокового скольжения машины. VSC состоит из нескольких компонентов:

  • Система датчиков. Изменение положения авто вокруг вертикальной оси определяет датчик рыскания YRS (Yaw Rate Sensor), расположенный под центральной консолью. Насколько сильно замедляется смещение центра тяжести в осевом и боковом направлениях, реагирует датчик замедления DS (Deseleration Sensor). В рулевую колонку встроен датчик поворота рулевого колеса, измеряющий угол поворота колес. Автомобили Тойота и Лексус оснащены датчиками скорости колес (каждого колеса). Угол открытия дроссельной заслонки также определяется специальным датчиком. Для определения силы давления в главном тормозном цилиндре при нажатии водителем на педаль тормоза установлен MCPS (Master Cylinder Pressure Sensor).
  • Блок управления ECU. Информация, полученная от датчиков, поступает в блок управления. Компьютер обрабатывает данные и передает сигнал на управляющие механизмы.
  • Исполнительные механизмы. Исполнительные механизмы приводят в действие гидравлику тормозных цилиндров колес и дроссельную заслонку, регулирующую мощность двигателя.
  • Информационный блок. Инфоблок состоит из сигнальной лампы, свидетельствующей о появлении бокового скольжения, и устройства, издающего предупредительный сигнал.

Как работает система VSC

Для того, чтобы понять, как работает система VSC, изучим природу появления бокового скольжения. При повороте на центр тяжести авто действует боковая или центробежная сила. Ее помогает преодолевать сцепление колес с поверхностью дороги. Чем выше скорость автомобиля, тем сильнее центробежная сила. При возникновении момента, когда сцепление шин с дорогой перестает удерживать снос машины, возникает занос передней или задней оси автомашины.

В случае, когда начинает заносить переднюю ось, автомобиль начинает смещаться наружу поворота, при заносе задней оси машина получает излишнюю поворачиваемость и смещается внутрь поворота. Система курсовой устойчивости постоянно контролирует положение авто, чтобы удержать его на траектории движения. Как она реагирует при заносе?

При потере сцепления с дорогой задней колесной оси блок управления получает информацию от всех датчиков. Информационный блок зажигает сигнальную лампу сработки системы курсовой устойчивости, дублирует звуковым сигналом. Для выравнивания курса ECU приводит в действие исполнительные механизмы:

  • перекрывает дроссельную заслонку, снижая скорость авто и увеличивая сцепные свойства шин;
  • подает сигнал о торможении на тормозной цилиндр переднего колеса с той стороны, в которую начался занос. При этом возникает сила, возвращающая автомашину на курс движения. Это позволяет безопасно закончить поворот.

По сути, VSC помогает водителю выполнить стандартные действия по выводу автомобиля из заноса: нужно снизить скорость и довернуть руль в сторону смещения задней оси.

Читайте также: Что такое ESP в машине и как оно работает.

Что значит Check VSC System

В качестве примера для проверки работоспособности системы курсовой устойчивости можно рассмотреть Lexus GS 300. Проверить работоспособность VSC просто: достаточно вставить в замок и провернуть ключ зажигания. Если контрольные лампы VSC”, “VSC off”, “ABS” и лампочка бокового скольжения загораются примерно на 3 секунды и затем гаснут — система работает нормально.

При неисправности системы курсовой устойчивости сигнал “VSC” горит, “VSC off” — начинает моргать. Для диагностики конкретной неиcправности используют специальный сканер, который подсоединяют к разъему DLC3, который находится под панелью со стороны водителя. Используя пункты меню, специалист считывает код неисправности.

В случае, если специального сканера нет, нужно использовать подкапотный сервисный разъем. В разъеме нужно соединить металлической скрепкой или другим предметом контакты Tc и E1 и включить зажигание. Мигающая лампа “VSC” выдаст диагностические коды. Для того, чтобы стереть коды, нужно не менее 8 раз нажать на педаль тормоза во время мигания лампы.

В случаях неисправностей с VSC на легковых автомобилях Toyota загорается сигнал “Check VSC System”, перестают срабатывать антипробуксовочная и антиблокировочная системы. По отзывам автовладельцев, в некоторых случаях сигнал перестает загораться сам собой, в других — после нескольких циклов запуска и остановки двигателя.

Для получения точной информации о неисправностях системы курсовой устойчивости автомобиля лучше обращаться в специализированные мастерские или сервисные центры, оснащенные специальным оборудованием.

Читайте также: Что такое интегрированная система активного управления VSM и для чего она нужна.

Система VSC: новшество, которое обещает стать стандартом

Наличие компонентов системы активной безопасности для современного автомобиля постепенно становится общепризнанным стандартом. Однако в целом это достаточно ёмкое понятие, поскольку таких компонентов насчитывается уже около десятка. И все они призваны предотвращать возникновение аварийных ситуаций, беря управление автомобилем в критические моменты в свои руки.

Одной из них является система курсовой устойчивости, появившаяся относительно недавно, но уже внедряемая большинством мировых автопроизводителей в своих моделях последних поколений.

Прежде чем перейти к рассмотрению, что такое система VSC в машине, определимся с некоторыми терминами. Курсовая устойчивость – способность автотранспортного средства сохранять вектор движения, не давая автомобилю опрокинуться или уйти в занос. Под управляемостью понимают способность ТС в любой момент времени двигаться в том направлении, которое выбрал водитель.

Что такое система курсовой устойчивости VSC

В российских источниках эту систему иногда называют системой стабилизации движения. Собственно говоря, оригинальное название – Vehicle Stability Control – более близко именно ко второму варианту. Задача системы – противодействовать силам, вызывающим боковое скольжение машины. В сочетании с работой двух других систем, антиблокировочной ABS и антипробуксовочной TRC, такой комплекс активной безопасности позволяет существенно повысить шансы не потерять управляемость при возникновении ситуаций, требующих от водителя не только мгновенной реакции, но и ясности ума, и наличия соответствующего опыта. Все три компоненты встречаются достаточно редко, поэтому в подобных ситуациях на помощь водителю приходят электронные помощники, которые действуют всегда с одинаковой скоростью, полагаясь на показания ряда датчиков.

Антиблокировочная система задействуется, когда в результате действий водителя (правильных или неправильных – это другой вопрос) происходит блокировка колёс при резком торможении. В условиях скользкой дороги это практически всегда приводит к заносам, и задача ABS – сохранить прямолинейную траекторию ТС.

Задача антипробуксовочной системы несколько иная – предотвратить проскальзывание колёс во время резких ускорений авто, чаще всего – при старте с места.

Система стабилизации движения призвана сохранять управляемость автомобилем при вхождении в повороты, независимо от того, разгоняется транспортное средство, тормозит или двигается с равномерной скоростью.

Статистика свидетельствует, что примерно каждая шестая авария происходит по причине потери управляемости автомобилем, в результате заносов, возникающих при потере контакта шин с дорожным полотном.

Система курсовой устойчивости активизируется в следующих случаях:

  • при совершении резких манёвров;
  • во время проезда участков с разным качеством покрытия автотрассы;
  • при недостаточной/избыточной поворачиваемости автомобиля.

Принцип действия VSC заключается в подтормаживании определённых колёс с целью курсовой стабилизации машины.

Но если ABS и TRC направлены на сохранение устойчивости положения автомобиля относительно его продольной оси, то система VSC предотвращает уход транспортного средства от вертикальной оси, что в автомобильной терминологии называют рысканием. Отметим, что аббревиатура VSC не является единственной в отношении данных систем активной безопасности. В зависимости от производителя, можно встретить и другие названия СКУ – ASMS, DSC, VSA, FDR, ESP. Это, кстати, ещё одно свидетельство того, что данная технология молода и не скована рамками определённых стандартов.

Принцип функционирования системы VSC

Обычно резкие повороты руля в водительской практике применяются в исключительных случаях, когда требуется избежать столкновения с другим ТС или наезда на препятствие/пешехода. Если трасса сухая, а покрышки имеют достаточную глубину протектора, с этим проблем не возникает. А вот на скользкой дороге подобные действия обычно приводят к заносу, к уходу с прямолинейной траектории. Далеко не всем водителям удаётся в подобных ситуациях вернуть автомобилю управляемость, что обычно приводит к развороту машины и возникновению аварийной ситуации.

Система VSC как раз и призвана предотвращать заносы, блокируя вращение колёс со стороны, противоположной вектору движения. Беря управление на себя, она способна исправить ошибки водителя, позволяя завершить начатый манёвр, как если бы дорога не была скользкой.

Рассмотрим кинематику бокового скольжения. Центробежная сила при поворотах на относительно больших скоростях заставляет заднюю часть автомобиля двигаться с ускорением в направлении, противоположном повороту. Если сцепление автопокрышек с дорожным полотном хорошее, сила трения препятствует заносу кормы машины. Но если скорость авто превысила некий порог, или же если дорога скользкая (вода, снег, ледяная корка), величина центробежной силы оказывается больше силы сцепления. В этом случае задняя часть автомобиля начинает сваливаться в сторону, несмотря на то, что руль уже возвращён в положение, при котором колёса смотрят прямо.

Такое явление и называют боковым скольжением. Отметим, что в определённых ситуациях смещаться могут и передние колёса.

И ещё один нюанс: если боковое скольжение началось при резком повороте руля на сухом дорожном покрытии, оно редко бывает затяжным, и обычно реакции водителя бывает достаточно, чтобы удержать автомобиль от дальнейшего заноса. Другое дело – скользкая автотрасса. Здесь одной реакции недостаточно, поскольку единственное средство, позволяющее водителю остановить занос – это вращение руля в противоположную сторону, чего оказывается недостаточно для выравнивания машины. Торможение также оказывается бесполезным, поскольку блокируются либо оба задних, либо оба передних колеса, что при уходе от продольной оси никак не способствует возвращению транспортного средства в исходное состояние. Это означает, что только система VSC в автомобиле способна эффективно справляться с подобными ситуациями.

Если происходит проскальзывание задних колёс, такое явление называют избыточной поворачиваемостью, и в этом случае заносит заднюю часть авто в сторону, противоположную повороту. Если убрать поступательную компоненту движения, то останется только вращение авто вокруг вертикальной оси, что может стать причиной его разворота. Понятно, что такие ситуации смертельно опасны, даже если предположить, что дорога пустынна и встречных машин нет – автомобиль может просто съехать в кювет, что при движении на большой скорости приведёт к его опрокидыванию.

Если начинают проскальзывать передние колёса, заносить в сторону, противоположную повороту, будет переднюю часть ТС. В этом случае говорят о недостаточной поворачиваемости, но последствия будут теми же – занос с выездом на встречку и возможный разворот, но уже против часовой стрелки.

Работа системы VSC при избыточной поворачиваемости

Стандартный приём, позволяющий предотвратить занос задней части автомобиля – быстрый поворот руля в обратную сторону. Но, во-первых, он не всегда помогает, а во-вторых, он требует от водителя быстрой реакции, что в критических ситуациях удаётся не всем и не всегда.

Система курсовой стабилизации действует по-другому, не используя механизм поворота колёс (в принципе уровень современных технологий позволяет реализовать и данную функцию – достаточно вспомнить о беспилотных автомобилях). В её задачи входит использование индивидуального торможения и управление дроссельной заслонкой.

Как это происходит? Если сигнал от датчика выявит начало вращения авто вокруг вертикальной оси по часовой стрелке, система VSC активируется, прикрывая дроссельную заслонку независимо от того, насколько утоплена педаль акселератора. Это приводит к уменьшению скорости вращения ведущих колёс, в результате чего сцепление покрышек с дорогой в пятне контакта улучшается. Одновременно с этим начинается подтормаживание левого переднего колеса, что приводит к возникновению силы, толкающей передок машины в сторону, противоположную повороту, предотвращая вращение вокруг оси. И хотя автомобиль при этом может сместиться со свое полосы движения, главную задачу система курсовой устойчивости выполнит – выровняет траекторию движения на прямолинейную, что позволит безопасно завершить манёвр.

Стабилизация траектории при недостаточной поворачиваемости

Если занос автомобиля вызван проскальзыванием передних колёс, это грозит выездом на встречную полосу движения и последующим заносом машины в кювет. Физика процесса здесь несколько иная, но действия системы VSC примерно те же – они направлены на предотвращение заноса и выравнивание автомобиля таким образом, чтобы позволить ему двигаться по «правильной» траектории.

Читать еще:  Как найти утечку антифриза в авто

Для этого опять же происходит закрытие дроссельной заслонки, чтобы увеличить сцепление резины с дорогой, одновременно начинает подтормаживаться заднее внутреннее колесо, что и позволяет удержать передок транспортного средств от сноса, предотвращая боковое скольжение.

Как система VSC определяет момент начала бокового заноса

Мы уже упоминали, что система стабилизации движения работает в связке с другими системами активной безопасности. В её состав входят следующие компоненты:

  • датчики;
  • информационный блок;
  • ЭБУ;
  • исполнительные механизмы.

Рассмотрим работу каждой из них. Система VSC использует шесть датчиков, два их которых находятся под центральной консолью автотранспортного средства:

  • первое устройство – датчик угловой скорости, в задачи которого входит определение момента, когда автомобиль начинает вращаться вокруг вертикальной оси. Его ещё называют датчиком рысканья, поскольку такое движение авто именуют рысканием. Английское (и международное) наименование датчика – Yaw Rate Sensor;
  • вторым устройством, входящим в систему датчиков курсовой устойчивости, является датчик замедления (Deceleration Sensor), функции которого заключаются в определении величины замедления центра тяжести легкового автомобиля в направлениях относительно вертикальной и боковых осей;
  • следить за углом поворота направляющих колёс – задача датчика угла поворота (Steering Angle Sensor);
  • скорость вращения колёс отслеживается датчиком скорости, который устанавливается на все колёса;
  • ДПДЗ (Throttle Position Sensor) датчик, который определяет текущий угол дроссельной заслонки;
  • наконец, в функции датчика измерения уровня давления в главном ТЦ (Master Cylinder Pressure Sensor) входит отслеживание давления в тормозной системе, которое изменяется при нажатии педали тормоза.

Все данные, отслеживаемые датчиками, отсылаются в бортовой компьютер, который их анализирует и на основании полученной информации определяет, следует ли активировать исполнительные устройства, чтобы избежать бокового заноса автомобиля.

Исполнительных механизмов в системе курсовой устойчивости два: один из них отвечает за индивидуальное подтормаживание колёс посредством изменения уровня давления в колёсных тормозных цилиндрах, второй приводит в движение дроссельную заслонку (призакрывает её, чтобы уменьшить скорость вращения колёс).

Как только ЭБУ определяет, что машина вошла в боковое скольжение, тут же на панели приборов загорается соответствующая сигнальная лампочка и приводится в действие механизм предотвращения заноса. Кроме световой индикации, о начале вращения автомобиля вокруг вертикальной оси информирует и звуковой сигнал.

Итак, алгоритм работы системы курсовой устойчивости можно описать следующим образом:

  • бортовой компьютер, постоянно получает данные от всего комплекса вышеописанных датчиков, анализируя их и принимая решение, началось ли рыскание автомобиля. Если да, то ЭБУ определяет, в какую сторону начался занос (то есть следует реагировать на избыточную или недостаточную поворачиваемость автотранспортного средства);
  • если начался занос, немедленно активируется механизм прикрытия дроссельной заслонки, что приводит к замедлению скорости вращения колёс;
  • одновременно подаётся управляющий сигнал в гидравлический блок тормозной системы с целью подачи давления в нужный тормозной цилиндр для подтормаживания соответствующего колеса;
  • при этом загорается сигнальная лампочка и звучит предупредительный сигнал, информирующие водителя, что начался занос и включен режим активизации системы VSC.

Отметим, что на некоторых моделях автомобилей имеется кнопка VSC OFF, позволяющая отключить систему курсовой устойчивости. Однако при этом деактивация не полная: при затяжных заносах система всё-таки срабатывает, хотя и с определённой задержкой. Многие автовладельцы, предпочитающие спортивный стиль езды, самостоятельно отключают систему, однако поскольку она сопряжена с работой ABS и TRC, то они также становятся неработоспособными. Так что советовать подобные модификации системы активной безопасности автомобиля никак нельзя.

Поскольку работа системы зависит от множества компонентов, неисправность любой из них (датчика, управляющего механизма, сбой прошивки ЭБУ) приведёт к загоранию лампочки чек VSC. Как правило, в подобных ситуациях самостоятельное диагностирование проблемы затруднительно.

Особо отметим, что загорание Check VSC System может означать и поломки, вообще не имеющие отношения к системе курсовой устойчивости, поэтому в подобных ситуациях следует обращаться в сервисный центр, где опытные и квалифицированные специалисты определят причину загорания лампочки.

Система VSC: новшество, которое обещает стать стандартом

Наличие компонентов системы активной безопасности для современного автомобиля постепенно становится общепризнанным стандартом. Однако в целом это достаточно ёмкое понятие, поскольку таких компонентов насчитывается уже около десятка. И все они призваны предотвращать возникновение аварийных ситуаций, беря управление автомобилем в критические моменты в свои руки.

Одной из них является система курсовой устойчивости, появившаяся относительно недавно, но уже внедряемая большинством мировых автопроизводителей в своих моделях последних поколений.

Прежде чем перейти к рассмотрению, что такое система VSC в машине, определимся с некоторыми терминами. Курсовая устойчивость – способность автотранспортного средства сохранять вектор движения, не давая автомобилю опрокинуться или уйти в занос. Под управляемостью понимают способность ТС в любой момент времени двигаться в том направлении, которое выбрал водитель.

Что такое система курсовой устойчивости VSC

В российских источниках эту систему иногда называют системой стабилизации движения. Собственно говоря, оригинальное название – Vehicle Stability Control – более близко именно ко второму варианту. Задача системы – противодействовать силам, вызывающим боковое скольжение машины. В сочетании с работой двух других систем, антиблокировочной ABS и антипробуксовочной TRC, такой комплекс активной безопасности позволяет существенно повысить шансы не потерять управляемость при возникновении ситуаций, требующих от водителя не только мгновенной реакции, но и ясности ума, и наличия соответствующего опыта. Все три компоненты встречаются достаточно редко, поэтому в подобных ситуациях на помощь водителю приходят электронные помощники, которые действуют всегда с одинаковой скоростью, полагаясь на показания ряда датчиков.

Антиблокировочная система задействуется, когда в результате действий водителя (правильных или неправильных – это другой вопрос) происходит блокировка колёс при резком торможении. В условиях скользкой дороги это практически всегда приводит к заносам, и задача ABS – сохранить прямолинейную траекторию ТС.

Задача антипробуксовочной системы несколько иная – предотвратить проскальзывание колёс во время резких ускорений авто, чаще всего – при старте с места.

Система стабилизации движения призвана сохранять управляемость автомобилем при вхождении в повороты, независимо от того, разгоняется транспортное средство, тормозит или двигается с равномерной скоростью.

Статистика свидетельствует, что примерно каждая шестая авария происходит по причине потери управляемости автомобилем, в результате заносов, возникающих при потере контакта шин с дорожным полотном.

Система курсовой устойчивости активизируется в следующих случаях:

  • при совершении резких манёвров;
  • во время проезда участков с разным качеством покрытия автотрассы;
  • при недостаточной/избыточной поворачиваемости автомобиля.

Принцип действия VSC заключается в подтормаживании определённых колёс с целью курсовой стабилизации машины.

Но если ABS и TRC направлены на сохранение устойчивости положения автомобиля относительно его продольной оси, то система VSC предотвращает уход транспортного средства от вертикальной оси, что в автомобильной терминологии называют рысканием. Отметим, что аббревиатура VSC не является единственной в отношении данных систем активной безопасности. В зависимости от производителя, можно встретить и другие названия СКУ – ASMS, DSC, VSA, FDR, ESP. Это, кстати, ещё одно свидетельство того, что данная технология молода и не скована рамками определённых стандартов.

Принцип функционирования системы VSC

Обычно резкие повороты руля в водительской практике применяются в исключительных случаях, когда требуется избежать столкновения с другим ТС или наезда на препятствие/пешехода. Если трасса сухая, а покрышки имеют достаточную глубину протектора, с этим проблем не возникает. А вот на скользкой дороге подобные действия обычно приводят к заносу, к уходу с прямолинейной траектории. Далеко не всем водителям удаётся в подобных ситуациях вернуть автомобилю управляемость, что обычно приводит к развороту машины и возникновению аварийной ситуации.

Система VSC как раз и призвана предотвращать заносы, блокируя вращение колёс со стороны, противоположной вектору движения. Беря управление на себя, она способна исправить ошибки водителя, позволяя завершить начатый манёвр, как если бы дорога не была скользкой.

Рассмотрим кинематику бокового скольжения. Центробежная сила при поворотах на относительно больших скоростях заставляет заднюю часть автомобиля двигаться с ускорением в направлении, противоположном повороту. Если сцепление автопокрышек с дорожным полотном хорошее, сила трения препятствует заносу кормы машины. Но если скорость авто превысила некий порог, или же если дорога скользкая (вода, снег, ледяная корка), величина центробежной силы оказывается больше силы сцепления. В этом случае задняя часть автомобиля начинает сваливаться в сторону, несмотря на то, что руль уже возвращён в положение, при котором колёса смотрят прямо.

Такое явление и называют боковым скольжением. Отметим, что в определённых ситуациях смещаться могут и передние колёса.

И ещё один нюанс: если боковое скольжение началось при резком повороте руля на сухом дорожном покрытии, оно редко бывает затяжным, и обычно реакции водителя бывает достаточно, чтобы удержать автомобиль от дальнейшего заноса. Другое дело – скользкая автотрасса. Здесь одной реакции недостаточно, поскольку единственное средство, позволяющее водителю остановить занос – это вращение руля в противоположную сторону, чего оказывается недостаточно для выравнивания машины. Торможение также оказывается бесполезным, поскольку блокируются либо оба задних, либо оба передних колеса, что при уходе от продольной оси никак не способствует возвращению транспортного средства в исходное состояние. Это означает, что только система VSC в автомобиле способна эффективно справляться с подобными ситуациями.

Если происходит проскальзывание задних колёс, такое явление называют избыточной поворачиваемостью, и в этом случае заносит заднюю часть авто в сторону, противоположную повороту. Если убрать поступательную компоненту движения, то останется только вращение авто вокруг вертикальной оси, что может стать причиной его разворота. Понятно, что такие ситуации смертельно опасны, даже если предположить, что дорога пустынна и встречных машин нет – автомобиль может просто съехать в кювет, что при движении на большой скорости приведёт к его опрокидыванию.

Если начинают проскальзывать передние колёса, заносить в сторону, противоположную повороту, будет переднюю часть ТС. В этом случае говорят о недостаточной поворачиваемости, но последствия будут теми же – занос с выездом на встречку и возможный разворот, но уже против часовой стрелки.

Работа системы VSC при избыточной поворачиваемости

Стандартный приём, позволяющий предотвратить занос задней части автомобиля – быстрый поворот руля в обратную сторону. Но, во-первых, он не всегда помогает, а во-вторых, он требует от водителя быстрой реакции, что в критических ситуациях удаётся не всем и не всегда.

Система курсовой стабилизации действует по-другому, не используя механизм поворота колёс (в принципе уровень современных технологий позволяет реализовать и данную функцию – достаточно вспомнить о беспилотных автомобилях). В её задачи входит использование индивидуального торможения и управление дроссельной заслонкой.

Как это происходит? Если сигнал от датчика выявит начало вращения авто вокруг вертикальной оси по часовой стрелке, система VSC активируется, прикрывая дроссельную заслонку независимо от того, насколько утоплена педаль акселератора. Это приводит к уменьшению скорости вращения ведущих колёс, в результате чего сцепление покрышек с дорогой в пятне контакта улучшается. Одновременно с этим начинается подтормаживание левого переднего колеса, что приводит к возникновению силы, толкающей передок машины в сторону, противоположную повороту, предотвращая вращение вокруг оси. И хотя автомобиль при этом может сместиться со свое полосы движения, главную задачу система курсовой устойчивости выполнит – выровняет траекторию движения на прямолинейную, что позволит безопасно завершить манёвр.

Стабилизация траектории при недостаточной поворачиваемости

Если занос автомобиля вызван проскальзыванием передних колёс, это грозит выездом на встречную полосу движения и последующим заносом машины в кювет. Физика процесса здесь несколько иная, но действия системы VSC примерно те же – они направлены на предотвращение заноса и выравнивание автомобиля таким образом, чтобы позволить ему двигаться по «правильной» траектории.

Для этого опять же происходит закрытие дроссельной заслонки, чтобы увеличить сцепление резины с дорогой, одновременно начинает подтормаживаться заднее внутреннее колесо, что и позволяет удержать передок транспортного средств от сноса, предотвращая боковое скольжение.

Читать еще:  Новый x5 2018

Как система VSC определяет момент начала бокового заноса

Мы уже упоминали, что система стабилизации движения работает в связке с другими системами активной безопасности. В её состав входят следующие компоненты:

  • датчики;
  • информационный блок;
  • ЭБУ;
  • исполнительные механизмы.

Рассмотрим работу каждой из них. Система VSC использует шесть датчиков, два их которых находятся под центральной консолью автотранспортного средства:

  • первое устройство – датчик угловой скорости, в задачи которого входит определение момента, когда автомобиль начинает вращаться вокруг вертикальной оси. Его ещё называют датчиком рысканья, поскольку такое движение авто именуют рысканием. Английское (и международное) наименование датчика – Yaw Rate Sensor;
  • вторым устройством, входящим в систему датчиков курсовой устойчивости, является датчик замедления (Deceleration Sensor), функции которого заключаются в определении величины замедления центра тяжести легкового автомобиля в направлениях относительно вертикальной и боковых осей;
  • следить за углом поворота направляющих колёс – задача датчика угла поворота (Steering Angle Sensor);
  • скорость вращения колёс отслеживается датчиком скорости, который устанавливается на все колёса;
  • ДПДЗ (Throttle Position Sensor) датчик, который определяет текущий угол дроссельной заслонки;
  • наконец, в функции датчика измерения уровня давления в главном ТЦ (Master Cylinder Pressure Sensor) входит отслеживание давления в тормозной системе, которое изменяется при нажатии педали тормоза.

Все данные, отслеживаемые датчиками, отсылаются в бортовой компьютер, который их анализирует и на основании полученной информации определяет, следует ли активировать исполнительные устройства, чтобы избежать бокового заноса автомобиля.

Исполнительных механизмов в системе курсовой устойчивости два: один из них отвечает за индивидуальное подтормаживание колёс посредством изменения уровня давления в колёсных тормозных цилиндрах, второй приводит в движение дроссельную заслонку (призакрывает её, чтобы уменьшить скорость вращения колёс).

Как только ЭБУ определяет, что машина вошла в боковое скольжение, тут же на панели приборов загорается соответствующая сигнальная лампочка и приводится в действие механизм предотвращения заноса. Кроме световой индикации, о начале вращения автомобиля вокруг вертикальной оси информирует и звуковой сигнал.

Итак, алгоритм работы системы курсовой устойчивости можно описать следующим образом:

  • бортовой компьютер, постоянно получает данные от всего комплекса вышеописанных датчиков, анализируя их и принимая решение, началось ли рыскание автомобиля. Если да, то ЭБУ определяет, в какую сторону начался занос (то есть следует реагировать на избыточную или недостаточную поворачиваемость автотранспортного средства);
  • если начался занос, немедленно активируется механизм прикрытия дроссельной заслонки, что приводит к замедлению скорости вращения колёс;
  • одновременно подаётся управляющий сигнал в гидравлический блок тормозной системы с целью подачи давления в нужный тормозной цилиндр для подтормаживания соответствующего колеса;
  • при этом загорается сигнальная лампочка и звучит предупредительный сигнал, информирующие водителя, что начался занос и включен режим активизации системы VSC.

Отметим, что на некоторых моделях автомобилей имеется кнопка VSC OFF, позволяющая отключить систему курсовой устойчивости. Однако при этом деактивация не полная: при затяжных заносах система всё-таки срабатывает, хотя и с определённой задержкой. Многие автовладельцы, предпочитающие спортивный стиль езды, самостоятельно отключают систему, однако поскольку она сопряжена с работой ABS и TRC, то они также становятся неработоспособными. Так что советовать подобные модификации системы активной безопасности автомобиля никак нельзя.

Поскольку работа системы зависит от множества компонентов, неисправность любой из них (датчика, управляющего механизма, сбой прошивки ЭБУ) приведёт к загоранию лампочки чек VSC. Как правило, в подобных ситуациях самостоятельное диагностирование проблемы затруднительно.

Особо отметим, что загорание Check VSC System может означать и поломки, вообще не имеющие отношения к системе курсовой устойчивости, поэтому в подобных ситуациях следует обращаться в сервисный центр, где опытные и квалифицированные специалисты определят причину загорания лампочки.

Система курсовой устойчивости vsc

Белорусский автосервис

г. Липецк ул. Фадеева 9 +7 905 688 68 78

Система курсовой устойчивости – что это такое? ESC, ESP, VSC, VDC

Ещё один замечательный механизм, без которого невозможно представить автомобиль мощнее, чем 150 сил и дороже $20000. Система курсовой устойчивости имеет ещё одно название – система динамической стабилизации, является механизмом для сохранения устойчивости автомобиля и его управляемости за счет своевременного определения и устранения различных критических ситуаций, которые возникают при дорожных условиях. Хотя эта система появилась очень давно, и всё время усовершенствуется, но не сразу стал привилегией для всех моделей. Сначала производители применяли на спорткарах, дорогих седанах, джипах, или же самых навороченных и мощных моделях. Позже всё больше и больше моделей (дешевле и попроще) стали оснащаться ею. В итоге, начиная с 2011 года, оснащение системой курсовой устойчивости всех легковых автомобилей стало обязательным требованием в США, Канаде, странах Евросоюза для всех автопроизводителей.

Данная система помогает удерживать автомобиль в пределах траектории заданной водителем при различных режимах движения, например разгоне, торможении, движении по прямикам, в виражах и при свободном качении и т.д.

В отличие от множества вспомогательных устройств у системы курсовой устойчивости нет собственной аббревиатуры или, общепринятого названия, например как для АБС, common rail, «автомат» и т.д.

Так что в зависимости от конкретного автопроизводителя различают следующие названия:
Итак, ESP – сокр. от Electronic Stability Programme, на большинстве автомобилей в Европе и Америке;
DSC – сокр. от Dynamic Stability Control на BMW, Jaguar, Rover/Range Rover;
DTSC – сокр. от Dynamic Stability Traction Control применяется на Volvo;
ESC – сокр. от Electronic Stability Control, применяется такими брендами, как Honda, Kia, Hyundai;
VDC – сокр. от Vehicle Dynamic Control, применяют на своих моделях Nissan, Infiniti, Subaru.
VSA – сокр. от Vehicle Stability Assist, на машинах Honda, и её «придворное» люкс-ателье Acura;
и наконец, VSC – сокр. от Vehicle Stability Control, применяет на своих моделях Toyota;

И всё же, в последнее время самое распространённое название в народе это ESP, в честь системы, которая выпускается с 1995 года. На его примере и рассмотрим особенности устройства и принцип работы данной системы. Раньше подобные системы могли немножко «теряться» при своей работе, тупить, или весьма искусственно работать. Ныне всё иначе – за рулём машины с подобной системой у водителя создаётся ощущение, что он обладает реакцией и навыками одновременно пилотов формульных болидов и гонщиков ралли-рейда!

Об устройство системы курсовой устойчивости

Система курсовой устойчивости – это система активной безопасности более высокого уровня и в себя включает такие устройства, как ABS (антиблокировочную систему тормозов), EBD (систему распределения тормозных усилий), EDS (электронную блокировку дифференциала) и ASR (антипробуксовочную систему).

В системе курсовой устойчивости объединяются входные сенсоры, блок управления и гидравлический блок в роли исполнительного устройства.

Входные сенсоры фиксируют различные конкретные параметры автомобиля и «конвертируют» их в электрические сигналы. С помощью сенсоров система динамической стабилизации следит за водителем, оценивает его действия и факторы, параметры при движении автомобиля. Основываясь на них компьютерная система и решает, как поступать в определённых условий!

При оценке действий водителя используются сенсоры угла поворота рулевого колёса, давления в тормозном механизме, выключатель стоп-сигнала. Сенсоры частоты вращения колёс, продольного и поперечного ускорения, скорости поворота автомобиля, давления в тормозной системе оценивают фактические параметры движения.

«Мозги» ESP принимают сигналы от сенсоров и формируют управляющие воздействия на исполнительные механизмы подконтрольных систем активной безопасности, таких как впускные и выпускные клапаны системы ABS, переключающие и клапаны высокого давления системы ASR, системные контрольные лампы ESP, системы ABS и тормозной системы.

Блок управления ESP в своей работе взаимодействует с такими системами, как система управления двигателем и АКПП, через соответствующие блоки. Кроме приема сигналов от данных систем в блоке управления формируется управляющие воздействия на исполняющие механизмы управления двигателем и АКПП.

Система динамической стабилизации – для своей работы использует гидравлический блок систем ABS и ASR со всеми их ингредиентами.

О принципе работы системы курсовой устойчивости

«Вычисление» наступления критической или аварийной ситуации осуществляется с помощью сравнения действий водителя и всех параметров движения автомобиля. Если действия водителя, точнее параметры движения при вождении, отличаются от тех параметров движения автомобиля, которые заложены в системе, и для неё являются нормальными или идеальными, то в таком случае система ESP тут же распознаёт аналогичную ситуацию как неконтролируемую, и тогда включается в работу.

Помощь системы курсовой устойчивости стабилизация в том, чтобы вернуть автомобиль на путь истинный, может происходить следующими способами: подтормаживанием определенных, одного или нескольких колёс; увеличением или уменьшением тяги двигателя (ан практике: помимо водителя, как будто кто-то давит на газ, или отпускает!); изменением угла поворота передних колес (грубо говоря рулит по его усмотрению), при наличии системы активного рулевого управления; регулирования степени жёсткости или демпфирования амортизаторов при наличии адаптивной подвески (комфортная мягкая, но валкая подвеска, или наоборот – жёсткая, но цельная и собранная).

Системой подтормаживание колёс происходит путём включения в работу необходимых систем активной безопасности. Работа системы при этом имеет кругообразный характер: увеличение и/или удержание давления и его сброс в тормозной системе.

Далее, Управление крутящим моментом мотора система ESP осуществляет несколькими способами: посредством изменения положения дроссельной заслонки; с помощью пропуска впрыска топлива; с помощью пропуска импульсов зажигания; с помощью изменения угла опережения зажигания; посредством отмены переключения передачи в АКПП; с помощью перераспределения крутящего момента между осями для полноприводных версий.
Механизм, который объединяет в одну упряжку систему курсовой устойчивости, подвеску и рулевое управление получило своё название – интегрированная система управления динамикой автомобиля.

О дополнительных функциях системы курсовой устойчивости

В конструкцию системы курсовой устойчивости, как правило, входят следующие подсистемы, которые и помогают выполнять её функции, то есть: гидроусилитель тормозов, система предотвращения опрокидывания и столкновения, системы стабилизации автопоезда и увеличения эффективности тормозов при нагреве, система удаления воды и влаги с тормозных дисков и пр.

Все эти замечательные механизмы, перечисленные выше, в подавляющем большинстве, не обладают своими собственными конструктивными «ингредиентами», а всего лишь являются программным «приложением» – расширением, дополняя систему ESP.

Roll Over Prevention – механизм предотвращения опрокидывания, сокр. от ROP может стабилизировать движение автомобиля при возникновении угрозы опрокидывания. Предотвращение опрокидывания происходит за счёт того, что уменьшается поперечное ускорение с помощью подтормаживания передних колёс и уменьшения тяги двигателя. В тормозных механизмах дополнительное давление создаётся посредством активного усилителя тормозов.

Fading Brake Support сокр. от FBS, она же Over Boost, система, которая повышает эффективность тормозов при их нагреве, помогает предотвращать недостаточное сцепление тормозных колодок с тормозными дисками, которые возникают при нагреве, с помощью дополнительного «скачка» давления в тормозном приводе.

Braking Guard – система предотвращения столкновения, может быть в арсенале устройств автомобиля при условии, что в его оснащении присутствует адаптивный круиз-контроль. Данная система помогает предотвращать опасность столкновения с помощью не только визуальных, но и звуковых сигналов, а в экстренной ситуации и путём нагнетания давления в тормозной системе – посредством автоматического включения насоса обратной подачи.

Следует поговорить ещё об одной интересной системе – о системе стабилизации автопоезда. Она встречается в автомобилях, оборудованными тягово-сцепным устройствами. Это устройство контролирует «ход» прицепа и предотвращает его рыскание при движении автомобиля, которое возникает за счёт торможения колёс или снижения тяги мотора.

О системе удаления влаги с тормозных дисков. Данная система работает в активном режиме, когда скорость превышает 50 км/ч, и когда включены стеклоочистители. Смысл работы этой системы заключается в том, чтобы периодически во время дождя и сильного снега кратковременно повысить давление в контуре передних колёс, в итоге тормозные колодки периодически прижимаются к дискам, и происходит полное испарение и удаление влаги. Таким механизмом обладает, например Mercedes SL, на котором и дебютировала эта система, и до сих пор успешно применяется.

Ссылка на основную публикацию
Adblock
detector