Система управления автомобиля
Autoservice-ryazan.ru

Автомобильный портал

Система управления автомобиля

Система управления динамикой автомобиля

Рассмотрим принцип работы системы управления динамикой автомобиля. Устройство деталей, схема, датчики, дополнительные функции и возможные модификации. В конце статьи видео-обзор принцип работы системы динамической стабилизации авто.

Содержание статьи:

  • Возможные вариации
  • Устройство и принцип работы
  • Дополнительные функции
  • Видео

Система управления динамикой автомобиля или по-другому интегрированный механизм динамики машины объединяет сразу несколько систем безопасности, тем самым улучшив обмен информации и повысив активную безопасность. Как итог, механизмы, объединенные между собой (рулевое управление, трансмиссия, механизм курсовой устойчивости и подвеска), стали активно взаимодействовать.

За счет доработки программного обеспечения, отвечающего за управление динамикой автомобиля, а так же его установка в блок управления курсовой устойчивостью, добавило маневренность автомобилю. Основной нюанс в том, что система не имеет своих конструктивных особенностей, а паразитирует на базе других механизмов. Её по сути, можно назвать условной, так как это скорей доработка инженеров и маркетинговых ход производителей. Базой послужило программное обеспечение, за счет которого собираются и анализируются данные с других активных механизмов безопасности.

Возможные названия системы управления динамикой

В зависимости от производителя, система управления динамикой автомобиля может менять свое название. Аналогично может меняться и перечень систем, которые входят для сбора информации и управления. Как пример, производители в свое арсенале называют так:

Вариации названий системы управления динамикой автомобиля
Название Производитель
VMD (Vehicle Dynamics Management) Bosch
VDIM (Vehicle Dynamics Integrated Management) Toyota
ICM (Integrated Chassis Management) BMW

Как показывает статистика, большая часть производителей использует систему VMD от компании Bosch. Все же, стоит понимать, что новые производители могут называть систему по-своему, поэтому стоит обращать на задачу и возможности механизма безопасности, а не на название.

Принцип работы и устройство системы управления динамикой

Как уже говорили, название системы управления динамикой автомобиля более абстрактное, нежели физическое. Система одновременно включает в себя несколько других механизмов, например в перечень могут быть включены функции:

  • снижение раскачивания и кренов подвески;
  • крутящий момент распределяется между правым и левым ведущими колесами;
  • крутящий момент распределяется между передней и задней осью (для полноприводных автомобилей);
  • управление углом поворота задних колес (для заднеприводных автомобилей);
  • дополнительный крутящий момент на рулевое колесо автомобиля;
  • дополнительный угол поворота передних колес машины.

Теперь же разберем, за что отвечает каждая из перечисленных функций. В случае создания дополнительного угла поворота на передние колеса автомобиля, система позволяет добиться значительной стабильности передвижения. Для создания такого эффекта система задействует электроусилитель рулевого колеса. Некоторые водители говорят, что это плюс, другие же что минус, так как во время процесса стабилизации система вмешивается в управление машиной.

Как пример, для автомобилей BMW, система активного рулевого управления и корректировки угла передних колес при повороте срабатывает только в случае торможения на скользкой дороге или же прохождении резких поворотов. В случае избыточного поворота передних колес, механизм поворачивает их в обратную сторону. Такое вмешательство в управление автомобилем позволяет стабилизировать машину, не снижая скорости.

Аналогичную систему дополнительного поворота на задние колеса можно встретить на заднеприводных автомобилях. Такой механизм чаще всего встречается на многорычажной подвеске, именно здесь электроника управляет сменой длины рычагов. В результате повышается маневренность машины, а на большой скорости повышает курсовую устойчивость.

Не меньшую роль в управлении динамикой автомобиля играет активное распределение крутящего момента между задней и передней осью, характерное для полноприводных машинах. Механизм и программное обеспечение автоматически управляет динамикой, придерживаясь золотой середины между недостаточной и избыточной поворачиваемостью машины. Для реализации использовали электронную блокировку дифференциала, а так же отдельные физические способы блокировки дифференциала.

Основная роль в поддержании динамики автомобиля положена на функцию управления кренами автомобиля. Она же в свою очередь базируется на полученной информации от поперечных стабилизаторов и адаптивных амортизаторов, которые входят в перечень активной подвески автомобиля.

Последняя функция, которая так же работает на благо динамики вашего автомобиля – дополнительный крутящий момент рулевого управлениямного. Если крутящий момент руля избыточный, то система подруливает в противоположную сторону, чтоб вывести автомобиль из заноса. Если же руль недостаточно повернут, то система устанавливает максимальную отметку и подруливает в большую сторону. Сила такого крутящего момента небольшая, порядка 3 Нм, поэтому практически не чувствуется и воздействует на динамику автомобиля минимально. Основой для реализации такой функции стал электроусилитель рулевого колеса.

Если рассматривать принцип работы системы управления динамикой автомобиля, в самом простом варианте он выглядит так. Главным в управлении динамикой считается программное обеспечение и блок управления. Система одновременно собирает, считывает и анализирует информацию с датчиков разных механизмов.

Далее на основе заложенных алгоритмов и условий решает, какими будут дальнейшие действия, и какой из механизмов автомобиля (тормоза, рулевое управление и механизмы безопасности) стоит задействовать. На первый взгляд это долгая процедура, собрать информацию, проанализировать её и выдать решение, но как показывают данные производителя, на все действия уходить меньше секунды времени.

С перечислено видно, как достигается управление динамикой автомобиля. Только объединение нескольких систем в одну позволяет достичь желаемых результатов.

Дополнительные функции управления динамикой авто

Помимо основных функций, предназначенных для управления динамикой автомобиля, есть и более скрытые функции. В отличие от других активных систем безопасности VDIM не столь навязчивая и действует только в крайнем случае. Ко всему, современные механизмы управления динамикой автомобиля могут подстраиваться под стиль езды водителя. Блок управления оптимизирует, и анализируем параметры, в последующем подстраивая рулевое управление, подвеску и другие системы. Одни делает более пассивными и снижает их показатели к минимально допустимым, другие же системы делает более активными, тем самым приводя их реакцию до максимальной отметки.

Инженеры разработали её таким образом, что VDIM может иметь доступ к любым системам безопасности, тем самым самостоятельно решать последующие, возможные варианты происходящей ситуации. Другими словами, механизм VDIM имеет что-то подобно искусственному интеллекту. Механизм может активизироваться за долго до наступления максимальных технических возможностей автомобиля, тем самым сохранив вашу жизнь и избежать ДТП.

[/b][b]Видео-обзор принцип работы системы VDIM:

Основные устройства и конструкция автомобиля

Современный автомобиль напичкан множеством примочек и апгрейдов. В этой статье мы попробуем разобраться во внутренностях автомобиля, а именно, в его устройстве и конструкции. Какие детали служат для комфорта, какие необходимы для езды, а какие – для безопасности. Ниже представлен список комплектующих, на которые можно разделить все устройства и кузовные части автомобиля:

  1. Несущая конструкция автомобиля.
  2. Трансмиссия.
  3. Электрооборудование.
  4. Двигатель.
  5. Ходовая часть.
  6. Система управления автомобилем.

Далее рассмотрим все эти разделы более подробно.

Общие сведения об устройстве автомобиля

Несущая система автомобиля

Она является скелетом автомобиля, к которому в последующем крепятся все детали. Именно от нее зависит срок службы автомобиля, и именно на несущую систему приходятся все нагрузки, которым подвергается автомобиль во время движения. Отсюда и ценовое соотношение если определить стоимость всего автотранспорта в 100%, то 50% будет приходиться именно на эту систему. Условно ее можно разделить на несколько видов:

  1. Рамная несущая система. Преимущество этой системы в простоте, как производства, так и ремонта. Кроме того, рамная несущая система позволяет выпускать шасси, различные по модификации автомобиля.
  2. Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении. Есть, конечно, у нее и недостаток – это достаточно плохая изоляция шумов извне.
  3. Рамно-кузовная система. Применяется исключительно на автобусах. Состоит из соединенных между собой деталей рамы и кузова. Является довольно простой при ремонте и производстве.

Схема трансмиссии заднеприводного автомобиля

Важность трансмиссии

Следующий элемент, который мы рассмотрим, – это трансмиссия. Это силовая передача, осуществляющая взаимосвязь двигателя с ведущими колесами автомобиля. Различают несколько видов трансмиссии: механическая (наиболее распространена), электрическая, гидрообъемная и комбинированная. На примере механической трансмиссии рассмотрим работу различных узлов, входящих в ее состав:

  1. Сцепление. Главной задачей является мягкое соединение маховика, первичного вала коробки передач. В состав сцепления входят следующие составные корзина и диск сцепления, а также выжимной подшипник.
  2. Коробка передач. Она предназначена для преобразования крутящего момента и дальнейшая его передача к карданному валу. Двигатель усиливается за счет вторичного вала. Среди коробок передач имеется разделение на механический и автоматический вид.
  3. Карданный вал (для автомобилей с задним приводом), передающий крутящий момент от вторичного вала к главной передаче.
  4. Соединение дифференциала и главной передачи представляет собой так называемый мост, который передает силу двигателя к колесам через полуоси.
  5. Полуось (приводной вал) – металлический стержень с устройством сцепления с дифференциалом и ШРУСом.
  6. Шарнир равных угловых скоростей (ШРУС) осуществляет подачу силы вращения на ведущие колеса.
  7. Раздаточный механизм распределяет усилия двигателя по ведущим колесам. Данный узел применяется в авто с колесной формулой 4*4.

Схма электрооборудования автомобиля – ВАЗ 2109

Электрооборудование автомобиля

Далее идет электрооборудование, которое представляет собой совокупность электрических приборов и аппаратов, обеспечивающих нормальную работу двигателя. Электрическая энергия необходима для запуска автомобиля, воспламенения горючей смеси, освещения, сигнализации, дополнительной аппаратуры. В состав электрооборудования входят источники и потребители тока. Источниками электрооборудования являются:

  1. Генератор – служит для преобразования механической энергии, получаемой от двигателя в электрическую энергию;
  2. Регулятор напряжения – выполняет функцию стабилизатора, держит на постоянном уровне напряжение тока, который вырабатывается генератором при изменяющейся частоте вращений коленчатого вала двигателя;
  3. Аккумуляторная батарея (аккумулятор) – необходим для преобразования химической энергии в электрическую энергию.

Потребителями тока являются:

  1. Стартер – служит для обеспечения вращения коленчатого вала частотой необходимой для пуска двигателя;
  2. Система зажигания – в процессе своей работы осуществляет воспламенение топлива в цилиндрах в порядке рабочего режима двигателя;
  3. Система освещения – вспомогательная служба, обеспечивающая работу авто в условиях пониженной видимости;
  4. Система сигнализации – служит для обеспечения безопасности движения автомобиля.

Классификация двигателей

Следующее, что мы рассмотрим, – это двигатель. Он являет собой комплекс механизмов, которые преобразуют тепловую энергию сгорающего в его цилиндрах топлива в механическую. Двигателя делят по многим параметрам. Во-первых, по виду топлива: бензиновые и дизельные. Во-вторых, по воспламенению горючей смеси: от электрической искры и от сжатия. В-третьих, по числу цилиндров: 2-ух, 3-ех, 4-ех, 5-ти, а также 6-ти и 8-ми цилиндровые и многоцилиндровые. В-четвертых, по расположению цилиндров: рядные и V-образные. Рабочий процесс двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска.

Механизмы и системы двигателя

Распределяют следующие механизмы и системы двигателя. Рабочий процесс двигателя главным образом осуществляется благодаря работе кривошипно-шатунному механизму. Открытие и закрытие впускных и выпускных клапанов двигателя производится за счет газораспределительного механизма. Подачу масла к трущимся деталям двигателя производит смазочная система. Охлаждение сильно нагретых деталей двигателя происходит за счет специальной системы охлаждения, которая отводит теплоту. Система питания подготавливает горючую смесь для двигателя и обеспечивает выход из двигателя отработавших газов. Воспламенение горючей и рабочей смеси в цилиндрах двигателя происходит благодаря системе зажигания.

Работа ходовой части

Ходовая часть – это комплекс устройств, при взаимодействии которых осуществляется перемещение автомобиля по дороге. Сюда входят колеса, а также задняя и передняя подвески. Через колеса осуществляется связь транспорта с дорогой. Главными задачами колес является передвижение по поверхности и изменение направления движения. Колеса различают по типу конструкции (дисковые, бездисковые, спицевые) и по назначению (ведущие, управляемые, комбинированные, поддерживающие). Колеса автомобиля могут быть с глубокими ободами или соединительными деталями, по внешнему виду напоминающими диски и спицы. Эти самые ободья необходимы для установки пневматической шины. Именно за счет ступицы осуществляется крепление колеса к мосту и его способность вращаться. За счет подвески происходит упругая связь колес и несущей системой. Подвеска выполняет две функции. Первая – повышение безопасности движения автомобиля, а вторая – это плавный ход автомобиля.

Читать еще:  Как добавить двигателю мощности

Типы подвески

Подвески делятся на следующие типы:

  1. Зависимая подвеска – это когда колеса одного из мостов взаимосвязаны друг с другом посредством жесткой балки. Следовательно, при движении они взаимосвязаны.
  2. Независимая подвеска – это когда колеса одного из мостов не связаны между собой, а подвешены независимо по отношению друг к другу, а следовательно и перемещение любого из колес не вызывает перемещения другого. Общими частями всех подвесок являются:
  3. Элементы, обеспечивающие упругость;
  4. Элементы, распределяющие направление силы;
  5. Гасящий элемент;
  6. Элементы, стабилизирующие поперечную устойчивость;
  7. Крепеж.

Работа подвески

Рассмотрим их более подробно. Элементы, которые обеспечивают упругость между неровностями на дороге и кузовом автомобиля, являются, так сказать, буфером. Сюда относятся пружины, рессоры, торсины. Жесткость пружин бывает постоянной и переменной. Рессоры визуально представляют из себя несколько металлических пластин взаимно связанных между собой, а также они довольно упруги по свойствам. Торсины внешне выглядят как металлическая труба, а внутри располагаются стержни.

Устройства для распределения силы

Устройства, распределяющие направление силы, в свою очередь, выполняют несколько задач. Во-первых, крепление подвески к кузовной части автомобиля. Во-вторых, передача силы на кузовную часть автомобиля. В-третьих, правильное расположение колес по отношению к кузову в горизонтальной и вертикальной плоскостях. Задачей гасящего элемента является противодействие элементам упругости, а если быть точнее, – сглаживание упругости. Стабилизационные устройства поперечной упругости распределяют боковую нагрузку автомобиля при изменении траектории движения. Все составные части подвески крепятся к кузовной основе и к опорным частям колес.

Система управления автомобилем

Под самой системой понимается совокупность устройств и механизмов, предназначенных для изменения скорости авто и изменения направления движения. Под устройствами изменения направления движения скрывается не что иное, как рулевое управление, применяющееся для нормального управления авто. Под системой изменения скорости, в свою очередь, понимается тормозная система, являющаяся главным узлом безопасности водителя и пассажиров. В комплектацию рулевой системы входят:

  1. Руль;
  2. Рулевой вал с крестовиной, который с одной стороны имеет шпицы для фиксации руля, а с другой шпицы – для крепления к рулевой колонке;
  3. Рулевая колонка, устройство, собранное в одном корпусе, в состав которого входит червячная ведущая шестерня и ведомая, рулевой тяги, состоящие из наконечника и маятника.

Работа рулевого механизма

Рассмотрим более детально рулевой механизм в работе: во время вращения рулевого колеса усиливается вращение червячного механизма колонки, который, в свою очередь, начинает вращать ведомую шестерню, приводящую в работу рулевую сошку. Она имеет крепление к средней рулевой тяге, а другой конец тяги соединяется с маятниковым рычагом. Он устанавливается на опоре и имеет жесткое крепление к кузову авто. От сошки с маятником отходят боковые тяги. Наконечники соединены со ступицей. Рулевая сошка, когда поворачивается, посылает усилие сразу на боковую тягу и средний рычаг. Средний рычаг, в свою очередь, дает начало действию второй боковой тяге, в результате чего ступицы поворачиваются, а, следовательно, и колеса вместе с ними. Главной задачей системы торможения является возможность управления скорость авто.

Системы торможения

Существует три варианта системы торможения: рабочая, стояночная, запасная. Основным узлом управления автомобилем и сохранения его в безопасности является рабочая тормозная система. Во избежание произвольного движения авто во время долгой стоянки на участках с наклоном дороги используют стояночный тормоз (ручник). Относительно молодой является запасная тормозная система, используемая для торможения ввиду неисправности рабочей тормозной системы. Из-за того, что пользование ручником при движении исключено, водитель с помощью рычага запасной системы с легкостью блокирует колеса, и транспорт останавливается.

Принцип действия тормозной системы

Данная система торможения может являться отдельным узлом или частью рабочей тормозной системы. Система торможения автотранспорта построена на эффекте трения. Именно вследствие трения между движущейся и находящейся в неподвижности деталью происходит такое явление, как торможение. Ниже рассмотрим непосредственно сам процесс тормоза. Во время процесса торможения возникает эффект трения между тормозными колодками и тормозным диском или тормозным барабаном, который находится в движении. Вследствие чего тормозные системы стало принято делить на дисковые и барабанные. В наше время стало принято использование результата симбиоза этих систем торможения, а именно, их сочетание. Хотя, может быть иначе, тут все зависит от решения конструкторов.

Вот, в принципе и все основные устройства и конструкции автомобиля. Конечно, можно еще много всяких мелочей и деталей упомянуть и вспомнить, но именно вышеупомянутые устройства и конструкции являются основными в автомобиле.

Механизмы управления автомобиля

Рулевое управление автомобиля

Механизмы управления автомобилем

Механизмы управления автомобиля – это механизмы, которые предназначены обеспечивать движение автомобиля в нужном направлении, и его замедление или остановку в случае необходимости. К механизмам управления относятся рулевое управление и тормозная система автомобиля.

Р улевое управление автомобиля — это совокупность механизмов, служащих, для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Передачу усилия поворота рулевого колеса к управляемым колесам обеспечивает рулевой привод. Для облегчения управления автомобилем применяют усилители руля, которые делают поворот руля легким и комфортным.

Устройство рулевого управления:

1 – поперечная тяга; 2 – нижний рычаг; 3 – поворотная цапфа; 4 – верхний рычаг; 5 – продольная тяга; 6 – сошка рулевого привода; 7 – рулевая передача; 8 – рулевой вал; 9 – рулевое колесо.

Принцип работы рулевого управления

Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля.

Механизмы управления, устройство

Рулевое управление состоит из следующих механизмов :

1. Рулевой механизм – замедляющая передача, преобразовывающая вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.
2. Рулевой привод – система тяг и рычагов, осуществляющая в совокупности с рулевым механизмом поворот автомобиля.
3. Усилитель рулевого привода (не на всех автомобилях) – применяется для уменьшения усилий, необходимых для поворота рулевого колеса.

Устройство рулевого управления

1 – Рулевое колесо; 2 – корпус подшипников вала; 3 – подшипник; 4 – вал колеса рулевого управления; 5 – карданный вал рулевого управления; 6 – тяга рулевой трапеции; 7 – наконечник; 8 – шайба; 9 – палец шарнирный; 10 – крестовина карданного вала; 11 – вилка скользящая; 12 – наконечник цилиндра; 13 – кольцо уплотнительное; 14 – гайка наконечника; 15 – цилиндр; 16 –поршень со штоком; 17 – кольцо уплотнительное; 18 – кольцо опорное; 19 – манжета; 20 – кольцо нажимное; 21 – гайка; 22 – муфта защитная; 23 – тяга рулевой трапеции; 24 – масленка; 25 – наконечник штока; 26 – кольцо стопорное; 27 – заглушка; 28 – пружина; 29 – обойма пружины; 30 – кольцо уплотнительное; 31 – вкладыш верхний; 32 – палец шаровый; 33 – вкладыш нижний; 34 – накладка; 35 – муфта защитная; 36 – рычаг поворотного кулака; 37 – корпус поворотного кулака.

Устройство рулевого привода:

1 – корпус золотника; 2 – кольцо уплотнительное; 3 – кольцо плунжеров подвижное; 4 – манжета; 5 – картер рулевого механизма; 6 – сектор; 7 – пробка заливного отверстия; 8 – червяк; 9 – боковая крышка картера; 10 – крышка; 11 – пробка сливного отверстия; 12 – втулка распорная; 13 – игольчатый подшипник; 14 – сошка рулевого управления; 15 – тяга сошки рулевого управления; 16 – вал рулевого механизма; 17 – золотник; 18 – пружина; 19 – плунжер; 20 – крышка корпуса золотника.

Бак масляный. 1 – Корпус бачка; 2 – фильтр; 3 – корпус фильтра; 4 – клапан перепускной; 5 – крышка; 6 – сапун; 7 – пробка заливной горловины; 8 – кольцо; 9 – шланг всасывающий.

Насос усилительного механизма. 1 – крышка насоса; 2 – статор; 3 – ротор; 4 – корпус; 5 – игольчатый подшипник; 6 – проставка; 7 – шкив; 8 – валик; 9 – коллектор; 10 – диск распределительный.

Принципиальная схема. 1 – трубопроводы високого давления; 2 – механизм рулевой; 3 – насос усилительного механизма; 4 – шланг сливной; 5 – бак масляный; 6 – шланг всасывающий; 7 – шланг нагнетательный; 8 – механизм усилительный; 9 – шланги.

Рулевое управление автомобиля КамАЗ

1 — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7— бачок гидросистемы; 8— насос гидроусилителя; 9 – сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора.

Механизм рулевого управления автомобиля КамАЗ :

1 — реактивный плунжер; 2— корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные колы к», 8 — уплотнительное кольцо; 9 и 15 — бинты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20— гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27— регулировочный винт; 30— регулировочная шайба; 32— зубчатый сектор вала сошки.

Рулевое управление автомобиля ЗИЛ;

1 — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; 11 — сошка.

Рулевое управление автомобиля МАЗ-5335:

1 — продольная рулевая тяга; 2— гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5— карданный шарнир привода рулевого управления; 6 — рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9— левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг.

Презентация на тему: “Системы управления автомобилем”

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

Описание презентации по отдельным слайдам:

Системы управления автомобилем Подготовил: мастер производственного обучения МАОУ ДО МУК «Эврика» Акмалов Мадияр Мунирович

Системы управления автомобилем Под системой управления автомобилем понимается совокупность устройств и (или) механизмов, предназначенных для изменения скорости авто и изменения направления движения.

Тормозная система автомобиля Система изменения скорости движения, попросту тормозная система, является главным узлом безопасности водителя и пассажиров. Служит так же для экстренного торможения в случае необходимости. Знаете, какая тормозная система была на самом первом автомобиле? Никакой! Водитель просто заливал необходимое количество топлива, что бы доехать до определенной точки, после чего двигатель глох и автомобиль останавливался. В настоящее время тормозные системы «шагнули» так далеко, что появились полуавтоматические тормоза, но об этом позже. Самые, конечно, распространенные тормозные системы, это гидравлические барабанные или дисковые тормоза.

Читать еще:  Прокладка свечного колодца

Тормозная система автомобиля Итак, тормозная система предназначена для изменения скорости движения автомобиля, по команде водителя, или электронной системы управления. Второе назначение тормозной системы – удержание автомобиля в неподвижном состоянии относительно дорожного покрытия, на время стоянки. Различают три вида тормозных систем: рабочая стояночная, в народе именуемая ручник. запасная, или система экстренного торможения.

Тормозная система автомобиля Рабочая система, это основной узел управления и безопасности в автомобиле, от надежности которого, зависят жизни пассажиров. Ручник, или стояночный тормоз приводится в действие, при длительной стоянке автомобиля, для исключения самопроизвольного движения, особенно на участках дороги имеющих уклон. Может использоваться и как система экстренного торможения. А у любителей драйва, устройством блокировки задних колес (для переднего привода) для выполнения резкого разворота, так называемый «полицейский разворот». Запасная система торможения стала применяться сравнительно недавно и служит для экстренного торможения во время отказа рабочей системы. Устанавливается, как правило, на автомобилях с электрическим ручником. Так как ручник во время движения не сможет включиться, то простым движением рычага экстренного торможения блокируются колеса и автомобиль остановится. Запасная система может быть реализована как отдельный узел, или как часть рабочей системы.

Тормозная система автомобиля Тормозная система автомобиля основана на физическом явлении – трении. Именно из-за трения между неподвижной деталью и вращающейся, достигается эффект торможения, а вот как это происходит, поговорим ниже. Во время торможения, трение возникает между фрикционными накладками тормозных колодок из мягкого материала и вращающимся тормозным диском или тормозным барабаном. Из-за этой особенности тормоза подразделяются на дисковые и барабанные. Но в современном автомобиле, как правило, применяется их симбиоз – передние тормоза дисковые, задние барабанные, но возможны варианты, все зависит от конструкторов.

Схема тормозной системы По способу привода в действие, тормозные системы подразделяются на: Гидравлические Пневматические Механические Электромеха-нические Электропневма-тические

Тормозная система автомобиля Рассмотрим работу гидравлической рабочей тормозной системы, которая состоит из: Педали привода тормозной системы Главного гидравлического цилиндра Рабочих цилиндров (для каждого колеса) Трубок, шлангов высокого давления Тормозных колодок Бачка Тормозной жидкости При нажатии на педаль тормоза приводится в действие шток главного цилиндра. Шток толкает поршенек, который нагнетает давление рабочей жидкости в трубках системы, далее в рабочем цилиндре. Поршни рабочих цилиндров нажимают на тормозные колодки (вариант дисковых тормозов). В барабанных тормозах в рабочем цилиндре находятся два поршенька, которые заставляют колодки разойтись по сторонам и прижаться к внутренней стенке барабана.

Тормозная система автомобиля Надо отметить, что давление в системе тормозом достигает 20 атмосфер, поэтому для уменьшения усилия водителя при нажатии на педаль тормоза, в систему вводится вакуумный усилитель тормозов, работу которого рассмотрим отдельно. Для улучшения характеристик тормозной системы, а так же ее надежности применяются еще несколько усовершенствований. Это: ABS (антиблокировочная система) ASR (антипробуксовочная система) ESP (система курсовой устойчивости) BAS (усилитель экстренного торможения) EBD (система распределения тормоза) EDS (блокировка дифференциала)

Тормозная система автомобиля Механическая тормозная система применяется в работе стояночного тормоза и экстренного торможения. Обычно ручник совмещается с гидравлической системой, но если на задних колесах применяются дисковые тормоза, то стояночный тормоз реализован отдельно. В некоторых автомобилях стояночный тормоз блокирует не колеса, а барабан тормозной, который находится на приводе трансмиссии. Принцип работы очень прост, приводя в действие рычаг ручника, натягивается трос, который соединен с тормозными колодками. Колодки расходятся и блокируют барабан или диск изнутри. Пневматические тормоза схожи с гидравлическими, но вместо тормозной жидкости в системе сжатый воздух. Для этого в систему введены ресиверы для его накопления. В электромеханических тормозах трос приводит в действие электродвигатель.

Рулевое управление автомобиля Система изменения направления движения (рулевое управление) применяется для «адекватного» управления авто. Почему адекватного? Все очень просто, можно было бы установить и автопилот для управления, но ни одна, даже очень «умная» автоматическая система управления не сможет оценить дорожную ситуацию и среагировать правильно. Рулевое управление первых автомобилей не отличалось оригинальностью, это была простая рычажная система, которая при вращении руля или движения рычагов поворачивала колеса в ту или другую сторону. Современная рулевая система управления представляет собой сложнейший узел, где применяются «помощники» водителя – гидроусилители, антипробуксовочные системы, и др. Ну а рулевые рычаги? Конечно, остались, но претерпели очень серьёзные изменения.

Рулевое управление автомобиля Система рулевого управления служит для управления автомобилем и обеспечения его движения в заданном направлении по команде водителя. Система включает в себя рулевой механизм и ру­левой привод. Что бы представить себе работу рулевых механизмов разных поколений, мы разделим объяснение на три части, именно столько их насчитывается в автомобилестроении.

Червячный рулевой механизм Свое название получил из-за системы привода рулевой колонки, а именно червячной шестерни

Рулевое управление автомобиля В состав рулевой системы входят: Руль рулевой вал с крестовиной, представляет собой металлический стержень, у которого с одной стороны расположены шлицы для фиксации руля, а с другой внутренние шлицы для крепления к рулевой колонке. Полная фиксация производится стяжной муфтой, которая обжимает место стыка вала и «червяка» привода колонки. В месте изгиба вала устанавливается кардан, при помощи которого передается боковое усилие вращения. рулевая колонка, устройство, собранное в одном литом корпусе, в состав которой входят червячная ведущая шестерня и ведомая. Ведомая шестерня соединена жестко с рулевой сошкой. рулевые тяги, наконечники и «маятник», совокупность этих деталей соединённых между собой при помощи шаровых и резьбовых соединений.

Работа рулевого механизма выглядит следующим образом: при вращении рулевого колеса, усилие вращения передается на червячный механизм колонки, «червяк» вращает ведомую шестерню, которая в свою очередь приводит в действие рулевую сошку. Сошка соединена со средней рулевой тягой, второй конец тяги крепится к маятниковому рычагу. Рычаг устанавливается на опоре и жестко крепится к кузову автомобиля. От сошки и «маятника» отходят боковые тяги, которые при помощи обжимных муфт соединены с рулевыми наконечниками. Наконечники соединяются со ступицей. Рулевая сошка, поворачиваясь, передает усилие одновременно на боковую тягу и на средний рычаг. Средний рычаг приводит в действие вторую боковую тягу и ступицы поворачиваются, соответственно колеса тоже. Такая система была распространена на старых моделях «Жигулей» и «BMW». Рулевое управление автомобиля

Реечный рулевой механизм

Рулевое управление автомобиля Самая распространенная система в настоящее время. Основные узлы это: рулевое колесо (руль) рулевой вал (то же что и в червячном механизме) рулевая рейка – это узел, состоящий из зубчатой рейки, в движение которую приводит рулевая шестерня. Собранная в одном корпусе, чаще из легкого сплава, крепится непосредственно к кузову авто. На концах зубчатой рейки изготовлены резьбовые отверстия для крепления рулевых тяг. рулевые тяги представляют собой металлический стержень, с одного конца у которого резьба, а со второй, шарнирное шаровое устройство с резьбой. рулевой наконечник, это корпус с шаровым шарниром и внутренней резьбой, для вкручивания рулевой тяги.

Рулевое управление автомобиля При вращении рулевого колеса, усилие передается на шестерню, которая приводит в действие рулевую рейку. Рейка «выезжает» из корпуса влево или вправо. Усилие передается на рулевой рычаг с наконечником. Наконечник вставлен в ступицу, которую и поворачивает в дальнейшем. Для уменьшения усилия водителя при вращении рулевого колеса, в реечное рулевое устройство были введены усилители руля, на них остановимся более подробно

Рулевое управление автомобиля Усилитель руля является вспомогательным устройством для вращения рулевого колеса. Различают несколько типов усилителей руля. Это гидроусилитель, гидроэлектроусилитель, электроусилитель и пневмоусилитель. Гидроусилитель состоит из гидравлического насоса, в действие который приводит двигатель, системы шлангов высокого давления, и бачка для жидкости. Корпус рейки выполнен герметически, так как в нем находится жидкость гидроусилителя. Принцип действия гидроусилителя следующий: насос нагнетает давление в системе, но если руль стоит на месте, то насос просто создает циркуляцию жидкости. Стоит только водителю начать поворачивать руль, как перекрывается циркуляция, и жидкость начинает давить на рейку, «помогая» водителю. Давление направлено в ту сторону, в которую вращается «баранка». В гидроэлектроусилителе система точно такая же, только насос вращает электромотор. В электроусилителе применяется так же электромотор, но соединяется он непосредственно с рейкой или с рулевым валом. Управляется электронным блоком управления. Электроусилитель еще называют адаптивным усилителем из-за возможности прикладывания разного усилия к вращению рулевого колеса, в зависимости от скорости движения. Известная система Servotronic. Пневмоусилитель это близкая «родня» гидроусилителя, только жидкость заменена на сжатый воздух.

Активная рулевая система

Рулевое управление автомобиля Самая «продвинутая» система управления в настоящее время, в состав входит: рулевая рейка с планетарным механизмом и электродвигателем блок электронного управления рулевые тяги, наконечники рулевое колесо

Рулевое управление автомобиля Принцип работы рулевой системы чем-то напоминает работу АКПП. При вращении рулевого колеса, вращается планетарный механизм, который и приводит в действие рейку, но вот только передаточное число всегда разное, в зависимости от скорости движения автомобиля. Дело в том, что солнечную шестерню снаружи вращает электродвигатель, поэтому в зависимости от скорости вращения изменяется передаточное число. На небольшой скорости коэффициент передачи составляет единицу. Но при большем разгоне, когда малейшее движение руля может привести к негативным последствиям, включается электромотор, вращает солнечную шестерню, соответственно необходимо руль довернуть больше при повороте. На маленькой скорости автомобиля электродвигатель вращается в обратную сторону, создавая более комфортное управление. Весь остальной процесс выглядит, как и у простой реечной системы. Ничего не забыли? Забыли, конечно! Забыли еще одну систему – винтовую. Правда, эта система больше похожа на червячный механизм. Итак – на валу проточена винтовая резьба, по которой «ползает» своеобразная гайка, представляет собой зубчатую рейку с резьбой внутри. Зубья рейки приводят в действие рулевой сектор, в свою очередь он предает движение сошке, ну а дальше как в червячной системе. Для уменьшения трения, внутри «гайки» расположены шарики, которые «циркулируют» во время вращения.

Система автоматического управления автомобилем

Стремительное развитие автомобильных электронных систем делает реальной идею беспилотного автомобиля. Многие автопроизводители и производители автокомпонентов активно работают над созданием системы автоматического управления автомобилем. Задача решается по двум направлениям:

  1. комплексная автоматизация автомобиля;
  2. автоматизация отдельных режимов движения транспортного средства (парковка, движение в пробках, перемещение по автомагистрали).

Комплексный подход к созданию беспилотного автомобиля реализуют могущественный Google.

В настоящее время разрабатываются и внедряются различные системы автоматической парковки, обеспечивающие параллельную и (или) перпендикулярную парковку автомобиля в автоматическом режиме. Парковочный автопилот имеют в активе BMW, Ford, Mercedes-Benz, Nissan, Opel, Toyota, Volkswagen.

Дальнейшее совершенствование системы адаптивного круиз-контроля позволяет реализовать автоматический режим движения автомобиля в пробках. В данном направлении работают Audi, Ford. Другим направлением является автоматизация движения автомобиля по автомагистрали. Разработки BMW, Cadillac основываются на существующих системах активной безопасности.

Беспилотный автомобль Google

В настоящее время система автоматического управления от Google реализована на шести опытных автомобилях Toyota Prius, Lexus RX 450h и Audi TT, которые проехали в беспилотном режиме свыше двух с половиной миллионов километров. Для реализации функций автоматического управления система включает в себя следующие входные устройства: лидар, радары, видеокамера, датчик оценки положения, инерционный датчик движения, GPS приемник.

Читать еще:  Какое должно быть давление тнвд

Лидар сканирует область вокруг автомобиля на расстоянии более 60 м и создает точную трехмерную картину его окружения. Лидар представляет собой вращающийся датчик на крыше автомобиля.

Радары помогают определить точное положение удаленных объектов. На автомобиле установлены четыре радара, три из которых расположены в передней части, а один радар – сзади.

Видеокамера определяет сигналы светофора и позволяет блоку управления распознавать движущиеся объекты, в т.ч. пешеходов и велосипедистов. Видеокамера располагается на лобовом стекле за зеркалом заднего вида.

Датчик оценки положения фиксирует движение автомобиля и помогает определить его точное местоположение на карте. Датчик оценки положения установлен на левом заднем колесе.

Инерционный датчик движения измеряет направление ускорения или замедления, продольный и поперечный крен кузова автомобиля, при его движении. Используется датчик системы курсовой устойчивости.

Сигналы от входных устройств передаются в электронный блок управления, где производится их обработка в соответствии с заложенной программой и формирование управляющих воздействий на исполнительные устройства. В качестве исполнительных устройств используются конструктивные элементы рулевого управления, тормозной системы, системы курсовой устойчивости, системы управления двигателем.

С 2016 года работа над беспилотным автомобилем Google выделена в отдельную компанию Waymo.

Автопилот Tesla

Автопилот, позволяющий автомобилю автономно двигаться на автомагистрали, используется на модели Tesla Model S с 2015 года. Система включает 8 камер кругового обзора, 12 ультразвуковых датчиков и головной радар.

Автопилот от Tesla пока имеет следующие ограничения: не всегда распознает дорожную разметку, не считывает сигналы поворота и стоп-сигналы, не обнаруживает пешеходов и велосипедистов. Но компания проводит постоянное улучшение программного обеспечения системы за счет обратной связи со своими автомобилями. Обновленная версия программы загружается в автомобиль по радиосигналу.

Российский автопилот

Проект по созданию российского автопилота стартовал в начале 2012 года по инициативе компании РобоСиВи. Система включает два основных блока – навигационный комплекс ГЛОНАСС и т.н. комплекс технического зрения. Что входит в комплекс технического зрения компания пока не раскрывает, говориться только о большом количестве датчиков.

В настоящее время производится тестирование системы на малогабаритной модели, в которой реализованы функции прокладки маршрута, трогания с места, маневрирования, торможения при возникновении препятствия (транспортное средство, люди). Несмотря на то, что российская компания работы начала значительно позже Google, она имеет все шансы добиться конкурентного преимущества за счет невысокой цены (предположительно в 50 раз дешевле Google) и универсальности.

Система Temporary Auto Pilot

В рамках проекта HAVit (Highly Automated Vehicles for Intelligent Transport – Высокоавтоматизированные автомобили для интеллектуального транспорта) в 2011 году была представлена полуавтоматическая система Temporary Auto Pilot, TAP (Временный автопилот). Система позволяет водителю в определенных условиях отдать управление автомобилем под контроль автоматики. По своей сути система является промежуточным этапом на пути к роботизированному автомобилю.

Система TAP объединяет в единое целое уже известные разработки Volkswagen: систему адаптивного круиз-контроля, систему помощи движению по полосе, систему распознавания дорожных знаков. В своей работе система Временного автопилотирования использует стандартные входные устройства перечисленных систем активной безопасности: лидар, радар, видеокамеру, ультразвуковые датчики.

Сигналы от входных устройств передаются в электронный блок управления, который с помощью исполнительных механизмов реализует следующие автоматические функции:

  • поддержание безопасного расстояния до впереди идущего автомобиля;
  • остановка и трогание с места;
  • движение по полосе;
  • распознавание знаков ограничения скорости и приведение скорости в соответствие с требованиями знака.

Система обеспечивает оптимальную степень автоматизации в зависимости от дорожной ситуации и состояния водителя, тем самым способствует безаварийному движению. Система работает на скорости до 130 км/ч. Система TAP полностью готова для внедрения на серийные автомобили.

Система Traffic Jam Assistant

Система Traffic Jam Assistant от Audi – первая серийная система автопилота для движения в пробках. Система автоматически поддерживает дистанцию до впереди идущей машины, тормозит, разгоняется, поворачивает, объезжает препятствия и даже уступает дорогу машинам экстренных служб. Конструктивно автопилот для пробок построен на основе адаптивного круиз-контроля и работает на скорости от 0 до 60 км/ч.

Система объединяет рад входных устройств: два радара, широкоугольную видеокамеру и восемь ультразвуковых датчиков. Радары сканируют определенные секторы на расстоянии 250 м. Видеокамера определяет дорожную разметку и различные препятствия. Ультразвуковые датчики контролируют пространство спереди, сзади и сбоку автомобиля. В любой момент работы системы водитель может взять управление автомобилем на себя.

Система Traffic Jam Assist

Систему автоматического движения в пробках готовит Ford и планирует ее использование на серийных автомобилях к 2017 году. Система Traffic Jam Assist включает радар и камеру, которые отслеживают движение соседних машин. Электронный блок управления выбирает нужную скорость и обеспечивает движение автомобиля в потоке.

Система ConnectedDrive Connect

Компания BMW работает над системой ConnectedDrive Connect (CDC), предназначенной для движения по автомагистрали. Система CDC включает ультразвуковой датчик, камеру, радары и лидар, сигналы от которых обрабатываются в электронном блоке управления. В результате воздействия на исполнительные механизмы различных систем автомобиля, изменяется его скорость и траектория движения. Помимо этого, система не превышает разрешенной на участке скорости, не производит обгон справа, а также возвращает автомобиль в свой ряд после обгона. В общем, в автопилоте реализован алгоритм идеального водителя. По заявлению компании система пока не готова к серийному применению.

Система Super Cruise

Система автоматического управления Super Cruise от Cadillac обеспечивает движение автомобиля по автомагистрали. Она позволяет осуществлять маневрирование, торможение, движение по полосе без участия водителя.

Система построена на ряде готовых решений компании: адаптивном круиз-контроле, системах автоматического экстренного торможения, предупреждения о столкновении, помощи движению по полосе, помощи при перестроении, активного головного света и др.

Текущее положение автомобиля оценивается с помощью входных устройств – радара, ультразвуковых датчиков, камеры и системы GPS. Разработчик отмечает, что эффективность работы системы зависит от внешних факторов – погода, наличие разметки.

Система SARTRE

Интересное решение автоматизации движения автомобиля предлагает компания Volvo. Система Safe Road Trains for the Environment (SARTRE) позволяет нескольким машинам двигаться по дороге в организованной колонне. Автомобили идут за головной машиной, в качестве которой выбирается грузовой автомобиль с водителем-профессионалом. Автомобили выстраиваются с дистанцией 6 м и полностью повторяют движение ведущего грузовика, что позволяет водителем отдохнуть, покушать, поговорить по телефону.

По желанию каждый из автомобилей в любой момент может покинуть группу. Для создания системы SARTRE используются наработки Volvo в области активной безопасности, в т.ч. адаптивный круиз-контроль. В настоящее время система находится в стадии испытаний.

Системы комплексного управления автомобилем

Возможность создания системы комплексного управления транспортным средством появилась после разработки систем цифрового контроля. На рисунке показана схема комплексной системы управления автомобилем. В принципе, она требует использования всего одного блока управления, способного контролировать все параметры транспортного средства.

Рис. Блок-схема комплексной системы управления автомобилем

На рисунке ниже показан один из вариантов соединения между собой нескольких блоков управления. В действительности, однако, используют несколько отдельных контроллеров (ECU), способных общаться друг с другом через шину данных (CAN).

Рис. Связи между блоками управления: Соединение блоков управления обычного типа для силовой установки автомобиля:
I. Блок управления «Мотроник»
II. Электронное управление дроссельным клапаном
III. Электронное управление трансмиссией
IV. Блок управления системой АБС и тягой

1. Измеритель массового расхода топлива
2. Инжекция и зажигание
3. Гидравлический модулятор системы АБС
4. Датчик скорости колес дли системы АБС
5. Лямбда-датчик
6. Привод дроссельной заслонки
7. Датчик педали газа
8. Датчик скорости, регулятор давления, приводы клапанов
9. Датчик скорости вращения двигателя

Преимущества централизованного управления

Преимущества централизованного управления можно разделить на две группы — «входы» и «выходы». Рассмотрим все исходные величины, требуемые для управления в каждой из нижеследующих областей:

  • система зажигания
  • система подачи топлива
  • система трансмиссии

Очевидно, что даже для указанных трех систем управления транспортным средством имеется много общих требований. Наличие одной централизованной системы управления может потенциально уменьшить сложность кабельной сети при одновременном расширении возможностей контроля. Это, фактически, преимущество «выходов». Рассмотрим общие условия эксплуатации транспортного средства во время внезапного и резкого ускорения и возможные «ответы» каждой из перечисленных систем:

Таблица. Пример реакции систем на ускорение

Система Возможные реакции
Зажигание Опережение момента зажигания
Подача топлива Инжекция дополнительного объема топлива
Трансмиссия Переход на более низкую передачу

Если бы каждая система работала сама по себе, возможно, что они не среагировала бы оптимальным образом с учетом работы других систем. Например, могут быть установлены момент времени зажигания и величина порции топлива, но затем ECU трансмиссии решит понизить передачу, увеличивая, таким образом, обороты двигателя. Это, в свою очередь, потребует изменений в дозировании топлива и выборе момента зажигания. В течение переходного процесса вполне вероятны уменьшение эффективности работы и увеличение эмиссии.

Таким образом, идеальное управление возможно лишь при единственном блоке управления или, по крайней мере, при наличии связи между отдельными блоками. Программирование такого, управления требует, однако, очень значительной производительности вычислительных модулей. Это становится особенно очевидным, если учитывать и другие системы управления, например, сцеплением, антиблокировкой тормозов, активной подвеской, рулем.

Система Cartronic компании Bosch

Сложность объединения систем постоянно увеличивается. Компания Bosch разработала систему, использующую иерархию электронных средств транспортного средства. Усовершенствования в качестве работы двигателя, уровне эмиссии, безопасности водителя и комфорте требуют большего взаимодействия различных электронных систем. Проект компании Bosch использует иерархическую структуру сигнала, чтобы решить эту проблему. На рисунке показаны два способа, которыми могут быть связаны системы. Первой использует обычную кабельную разводку, второй — шину CAN.

Рис. Типы связи систем автомобиля

На рисунке показано различие между потоком данных в автономной системе и потоком данных в иерархической системе. Система Cartronic использует принцип, при котором каждая система может управляться от системы, занимающей в иерархии управления более высокий уровень, к примеру, интегрированные системы управлении двигателем и управления коробкой передач не общаются непосредственно между собой, а только через стоящую выше по иерархии систему управления трансмиссией.

Резюме

Производители транспортных средств продолжают вести исследования в области комплексных систем управления. Все больше и больше систем интегрируется между собой, что приводит к снижению стоимости электронного оборудования автомобиля. Одновременно растут требования к вычислительной мощности систем, и скоро станет нормой применение 32-разрядных (или даже 64-разрядных) быстродействующих микроконтроллеров. Обратная сторона использования единственного блока управления для управления всем транспортным средством — это стоимость замены блока управления. При существующих ценах даже ECU единой системы может стоить не так уж и мало, хотя, в среднем, стоимость изготовления всего транспортного средства может уменьшиться.

Комплексный централизованный контроль дает и другие возможные преимущества, например расширение бортовой диагностики (OBD) для контроля над транспортным средством в целом, что потенциально экономит время ремонта и эксплуатационные расходы.

Ссылка на основную публикацию
Adblock
detector