Способы уплотнения гильзы цилиндра
Autoservice-ryazan.ru

Автомобильный портал

Способы уплотнения гильзы цилиндра

Уплотнение головки блока цилиндров двигателя с поступательно движущимися поршнями

Изобретение относится к уплотнениям головок блоков цилиндров для двигателей с поступательно движущимися поршнями. Цель изобретения – повышение надежности уплотнения. Уплотнение состоит из уплотняющего элемента в зоне гильзы цилиндра и уплотняющего элемента в зоне блока цилиндров . Оба уплотняющих элемента выполнены из пассивного материала. Уплотняющий элемент расположен в углублении буртика гильзы цилиндра и нагружается путем затяжки болтов головки блока цилиндров в определенной зоне сверх предела текучести материала. С одной стороны предусмотрена в головке блока цилиндров против углубления буртика гильзы цилиндра круговая канавка, а с другой стороны углубление или круговая канавка, или круговая перемычка. Благодарая этому уплотняющий элемент гильзы цилиндра в зоне своего наружного и внутреннего периметра нагружается сверх предела текучести материала . 4 з.п.ф-лы. 5 ил. сл С

РЕСПУБЛИК (5!)5 F 02 F 11/00

ПО ИЗОБ ЕТЕНИЯМ И ОТКРЫТИЯМ

К ПАТЕНТУ (21) 4356289/06 (22) 18.08.88 (31) P 3727598.4 (32) 19.08,87 (33) DE (46) 23.06.91. Бюл.%23 (71) Ман Нуцфарцойге ГМБХ (0Е) (72) Хериберт Кубис и Йозеф Винтер (DE) (53) 621.43 (088.8) (56) Авторское свидетельство СССР по зая вке М 3610147, кл. F 02 F 11/00, опублик, 1986, (54) УПЛОТНЕНИЕ ГОЛОВКИ БЛОКА ЦИЛИНДРОВ ДВИГАТЕЛЯ С ПОСТУПАТЕЛЬНО ДВИЖУЩИМИСЯ ПОРШНЯМИ (57) Изобретение относится к уплотнениям головок блоков цилиндров для двигателей с поступательно движущимися поршнями.

Цель изобретения — повышение надежности

Изобретение относится к уплотнениям головок блоков цилиндров для двигателей с поступательно движущимися поршнями.

Цель изобретения — повышение надежности уплотнения.

На фиг.1 показано уплотнение между головкой блока цилиндров и гильзой цилиндра или блоком-картером, причем первый уплотняющий элемент имеет центрирующий выступ; на фиг.2 — первый уплотняющий элемент, имеющий на внутреней поверхности три равномерно расположенных шипа; на фиг. 3 — разрез А — А на фиг.2: на фиг.4 — разрез Б — Б на фиг,2; на фиг.5— уплотнение, где углубление буртика гильзы цилиндра имеет круговую перемычку и уп. Ж 1658826 A3 уплотнения. Уплотнение состоит из уплотняющего элемента в зоне гильзы цилиндра и уплотняющего элемента в зоне блока цилиндров. Оба уплотняющих элемента выполнены из пассивного материала.

Уплотняющий элемент расположен в углублении буртика гильзы цилиндра и нагружается путем затяжки болтов головки блока цилиндров в определенной зоне сверх предела текучести материала, С одной стороны предусмотрена в головке блока цилиндров против углубления буртика гильзы цилиндра круговая канавка, а с другой стороны углубление или круговая канавка, или круговая перемычка. Благодарая этому уплотняющий элемент гильзы цилиндра в зоне своего наружного и внутреннего периметра нагружается сверх предела текучести материала. 4 з.п.ф-лы, 5 ил. лотняющий элемент имеет центрирующую канавку, разрез.

Уплотнение установлено между головкой блока 1 цилиндров и гильзой 2 цилиндра или блоком-картером. При этом используется первый уплотняющий элемент

3 или отдельно от него(между ними находится канал для отвода просочившегося газа) второй уплотняющий элемент 4. Оба уплотняющих элемента 3 и 4 выполнены из массивного металла, предпочтительно чугуна, Гильза 2 цилиндра опирается с помощью буртика 5 на корпус блока 1. Поверхность б ртика 5 гильзы 2 цилиндра со стороны головки блока 1 цилиндров имеет со стороны камеры сгорания огнестойкий краевой выступ 6, Примыкающая к нему радиально

1658826 снаружи эона имеет кольцеобразное углубление 7, в которое установлен первый уплотняющий элемент 3. Этот уплотняющий элемент в неспрессованном состоянии (изображено штрихпунктирной линией) имеет

Т-образное поперечное сечение. Поверхность основания 8 (опорная эона первого уплотняющего элемента) углубления 1 имеет в средней зоне круговую канавку 9. В этой канавке центрируется неспрессованный первый уплотняющий элемент с помощью имеющегося на нижней стороне этого уплотняющего элемента шипа 10. Напротив канавки 9 — незначительное поперечное смещение ввиду допусков на ширину канавки. а также допусков на фиксирование головки блока цилиндров. В днище головки блока 1 цилиндров также прорезана круговая канавка 11. При деформировании уплотнения в результате затягивания болтов кромки 12 канавок 9 и 11 врезаются в первый уплотняющий элемент 3, причем последний в зоне наложения на внутренние и наружные периферийные участки одновременно деформируется сверх границы текучести материала и благодаря толщине остаточной поверхности уплотнения (второй уплотняющий элемент 4 в зоне блока) и пространству О в основании 8 углубления осаживается относительно торцовой поверхности 13 блока на заданный размер.

Увеличение радиального расширения первого уплотняющего элемента 3 наружу и внутрь происходит относительно беспрепятственно, так как благодаря ненагруженным периферийным зонам отсутствует увеличивающее работу по изменению формы опорное воздействие. Одновременно глубины Т и Тк (с одной стороны на опорной поверхности 8 и с другой стороны на поверхности днища головки блока 1 цилиндров) прорезания канавок 9 и 11 выбираются так, что можно беспрепятственно осуществлять осаживание до середины уплотняющего элемента, так как после прессования на дне канавок 9 и 11 остаются пустые пространства 14 и 15.

Благодаря запрессовыванию уплотняющего элемента в канавки 9 и 11 образуется прилегание боковых поверхностей с геометрическим замыканием между первым уплотняющим элементом 3 и головкой блока 1 цилиндров, а также гильзой 2 цилиндра, которое совместно с опорными поверхностями в направлении силы прессования образует лабиринтное уплотнение с целью обеспечения уплотнения, исключающего прорыв газов. Кроме того, благодаря предлагаемому уплотнению образуется улучшенное соединение гильзы 2 цилиндра и

55 головки блока 1 цилиндров, которое противодействует поперечному перемещению гильзы цилиндра, обусловленному переменным нормальным давлением поршня, В первом уплотняющем элементе 3 с целью уменьшения производственных затрат отказываются от центрирующего шипа

10 для фиксации уплотняющего элемента 3 в канавке 9 гильзы 2 цилиндра. Необходимое фиксирование первого уплотняющего элемента 3 осуществляется с помощью трех равномерно распределенных по внутренней окружности центрирующих выступов

16, Последние обеспечивают необходимое для свободного расширения внутрь в результате деформирования первого уплотняющего элемента расстояние относительно огнезащитного краевого высгупа 6 I ильзы 2 цилиндра. Вследствие отсутствия центрирующего шипа 10 расположенные примерно одна против другой канавки 9 и 11 гильзы 2 цилиндра и головки блока 1 цилиндров могут выполняться одинаковой глубины врезания.

На наружной и внутренней зонах торцовой поверхности 8 углубления 7 в буртике гильзы цилиндра выполнены выточки 17, которые облегчают свободное радиальное изменение формы первого уплотняющего элемента наружу и внутрь в процессе текучести материала первого уплотняющего элемента.

При выполнении первого уплотняющего элемента с тремя равномерно расположенными шипами на внутренней поверхности (фиг.2) уменьшаются производственные затраты.

Вместо канавки 9 на торцовой поверхности 8 углубления буртика гильзы 2 цилиндра может находиться круговая перегородка 18 (фиг.5), которая расположена примерно по середине напротив радиально более широкой канавки 11 в головке блока 1 цилиндров. Центрирование уплотняющего элемента 3 осуществляется или с помощью выступов 16, или с помощью выдавленной или выточенной канавки 19, в которую входит перегородка 18 при установке первого уплотняющего элемента 3.

Перемычка 18 на торцовой поверхности

8 углубления гильзы 2 цилиндра вызывает еще более выраженную деформацию первого уплотняющего элемента 3 с более глубоким проникновением в канавку 11 в головке блока 1 цилиндров. Таким образом достигается увеличенное прилегание к боковым поверхностям канавки 11 и перемычки 18 с геометрическим замыканием и тем самым улучшение лабиринтного уплотнения. В этом случае канавка 11 даже после прессо1658826 вания заполняется не полностью, остается пустое пространство 15 и деформирование уплотняющего элемента 3 в диапазоне текучести материала происходит только по наружному и внутреннему периметру элемента.

1. Уплотнение головки блока цилиндров двигателя с поступательно движущимися поршнями, состоящее из первого уплотняющего элемента, расположенного между буртиком с выступом на верхней торцовой поверхности гильзы цилиндра с огнезащитным краевым выступом и головкой блока цилиндров, и второго уплотняющего элемента, расположенного между блоком цилиндров и головкой блока цилиндров, причем оба уплотняющих элемента выполнены из массивного металла, а первый уплотняющий элемент установлен в про гочке, выполненной на верхней торцовой поверхности буртика гильзы цилиндра, опирающегося на внутреннюю поверхность блока цилиндров, за огнезащитным краевым выступом гильзы цилиндра, причем толщина 0 второго уплотняющего элемента и расстояwe U между образующими верхних торцовых поверхностей буртика гильзы цилиндра и блока цилиндров выбраты с учетом ограничения процесса текучести первого уплотняющего элемента при его деформации, о тличаeщееся тем, что, с целью повышения надежности уплотнения, на торцовых поверхностях головки блока цилиндров и буртика гильзы цилиндра выполнены кольцевые канавки, расположенные одна против другой с возможностью их частичного

5 заполнения материалом деформированного первого уплотняющего элемента для плотного беззазорного сопряжения последнего с кольцевыми канавками.

2. Уплотнение по п.1, о т л и ч а ю щ е е10 с я тем, что на первом уплотнительном элементе со стороны гильзы цилиндра выполнен центрирую ций шип, сопряженный с поверхностью круговой канавки буртика гильзы цилиндра.

15 3. Уплотнение по п.1, о т л и ч а ю щ е ес я тем, что на обращенных одна к другой торцовых поверхностях первого уплотняющего элемента и буртика гильзы цилиндра выполнены соответственно кольцевая ка20 навка и выступ для центрирования и плотного беззазорного сопряжения первого уплотняющего элемента с буртиком гильзы цилиндра, 4. Уплотнение по пп.1 — 3, о т л и ч а ю25 щ е е с я тем, что внутренняя поверхность первого уплотняющего элемента снабжена равномерно расположенными центрирующими выступами.

5. Уплотнение по пп 1 — 4, о т л и ч а ю30 ц е е с я тем, что на торцовой поверхности буртика гильзы цилиндра по внешнему и внутреннему его диаметрам выполнены кольцевые выточки.

7 8 IZ 18 19 12

Техред M.Ìoðãåíòàë Корректор Т.Палий

Производственно-издательский комбинат “Патент”, г, Ужгород, ул.Гагарина, 101

Заказ 1725 Тираж 357 Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

Способы уплотнения гильзы цилиндра

Цилиндр работает в условиях резко переменных давлений в надпоршневой полости. Стенки ее соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500…2500°С, а средняя скорость скольжения поршня по стенкам достигает 11…17 м/с. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Под действием высокого радиального давления колец происходит разрыв масляной пленки на стенках цилиндра – резко повышается трение, что приводит к интенсивному изнашиванию цилиндра и колец.

Продукты неполного сгорания, в первую очередь оксиды азота, вместе с водяными парами образуют агрессивную среду, являющуюся причиной коррозионного изнашивания. Интенсивность коррозионного изнашивания увеличивается при эксплуатации двигателя с пониженным температурным режимом (320…330 К). Износ цилиндров, колец и поршней увеличивается при наличии в масле абразивных частиц, поступающих в цилиндр двигателя вместе с воздухом при его некачественной очистке в воздухоочистителе, с топливом и маслом при некачественной заправке и фильтрации. Темпы абразивного изнашивания на 60…80 % превосходят темпы коррозионного, поэтому необходимо применять специальные меры для пылезащиты двигателя. Металл цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках.

В соответствии с этими требованиями основным материалом для цилиндров служит перлитный серый чугун с небольшими добавками легирующих элементов (никель, хром и др.), а также высоколегированный чугун, сталь и алюминиевые сплавы с хромовыми и другими покрытиями внутренних стенок. Поверхности последних подвергают закалке ТВЧ и тщательно обрабатывают, получая после шлифовки зеркальную поверхность – зеркало цилиндра. В случае изготовления блока цилиндров совместно с гильзами из алюминиевого сплава на внутреннюю поверхность гильз производится плазменное напыление стали и молибдена (рис.1).

Высокая температура газов в надпоршневой полости и большое количество теплоты, выделяющейся при трении поршня и поршневых колец о зеркало цилиндра, вызывают интенсивный нагрев стенок, вследствие чего возникает необходимость в постоянном отводе от них теплоты. Достигают это непрерывным охлаждением стенок цилиндров жидкостью или воздухом. Даже кратковременное прекращение такого охлаждения приводит к аварии и выходу из строя двигателя. На прогретом двигателе температуру стенок поддерживают в пределах 100…150°С. Более высокую температуру имеют при этом стенки верхней зоны цилиндров, омываемые наиболее горячими газами. В двигателях с воздушным охлаждением отдельные участки верхней зоны цилиндров нагреваются до 170…180°С, а средняя температура их стенок всегда бывает выше, чем при жидкостном охлаждении. В зависимости от способа охлаждения конструкция цилиндров и всего двигателя приобретает свои характерные особенности.

Читать еще:  Паркетник до 1000000

Цилиндры двигателей воздушного охлаждения отливают индивидуально, а для увеличения теплоотвода наружную поверхность их снабжают ребрами треугольного и реже прямоугольного сечения (рис.2).

Следовательно, при воздушном охлаждении цилиндр, строго говоря, состоит из двух конструктивных элементов: гильзы, или, как ее называют иногда, втулки и оребрения. Размер ребер и межреберных промежутков выбирают из условий, чтобы оребрение оказывало возможно меньшее сопротивление потоку охлаждающего воздуха и в то же время было достаточно развитым и обеспечивало нужную интенсивность теплоотвода. В существующих конструкциях площадь поверхности оребрения цилиндра примерно в 10 раз превышает площадь его зеркала в зоне оребрения.

В ДВС с воздушным охлаждением применяют как монолитные, так и комбинированные цилиндры. Первые из них отливают из чугуна, реже делают стальными, а в малых двигателях применяют также алюминиевые сплавы с хромированной поверхностью зеркала. Ребра отливают вместе с гильзой и механически не обрабатывают или нарезают на станках. Известен также способ навивки ребер из тонкой ленты (с развальцовыванием ее у основания). Чаще используют первый, наиболее простой и экономически выгодный метод. Комбинированные цилиндры представляют собой алюминиевую оребренную основу с запрессованной в нее, например, чугунной гильзой (рис.3). В таких цилиндрах высокая износостойкость сочетается с хорошим теплоотводом, так как теплопроводность алюминиевых сплавов в три-четыре раза выше теплопроводности чугуна.

Цилиндры двигателей с жидкостным охлаждением в отличие от рассмотренных оребренных изготовляют с полостью под охлаждающую жидкость, что значительно усложняет их конструкцию. Внутренние стенки образуют гильзу цилиндра, а внешние, более тонкие, стенки – его рубашку. Стенки рубашки охватывают гильзовую часть цилиндра так, что между ними образуется полость для циркуляции охлаждающей жидкости. Из соображений облегчения ремонта и увеличения срока службы цилиндров с жидкостным охлаждением их часто изготовляют комбинированными, со вставками на всю длину зеркала цилиндра и с легкосъемными гильзами. В 50…60-х годах прошлого века широко применяли также короткие вставки (около 50 мм длины), изготовлявшиеся из аустенитного износостойкого чугуна нирезист. Их запрессовывали в верхнюю наиболее изнашиваемую зону цилиндра и обрабатывали совместно с зеркалом цилиндра (гильзы). Срок службы цилиндров с такими вставками увеличивался в 2,5…3 раза. В настоящее время в связи с резким улучшением качества горюче-смазочных материалов и совершенствованием фильтров для воздуха и масла дорогостоящие нирезистовые вставки утратили свое значение. Вставки, запрессовываемые на всю длину цилиндра не соприкасаются с охлаждающей жидкостью, вследствие чего их называют сухими гильзами (рис.4).

Сухие гильзы не ослабляют общую жесткость цилиндра, но несколько усложняют его конструкцию и удорожают производство, поэтому в двигателях автомобилей с жидкостным охлаждением их используют сравнительно редко. При ремонтах двигателя, связанных с расточкой цилиндров, сухие гильзы сохраняют до тех пор, пока их ремонтный размер находится в допускаемых пределах.

Легкосъемные гильзы устанавливают в цилиндры свободно с гарантированным зазором (≈ 0,08 мм). Это большое их достоинство. В случае износа их легко заменяют новыми или другими, заранее отремонтированными. Легкосъемные гильзы непосредственно омываются охлаждающей жидкостью, циркулирующей в рубашке охлаждения, в связи с чем их называют мокрыми гильзами (рис.5).

Они имеют, как правило, опорный пояс или фланец и один или два установочных пояса с наружной стороны гильзы. С помощью установочных хорошо обрабатываемых поясов гильзу центрируют в соответствующих гнездах цилиндра, а опорный фланец фиксирует их положение по высоте цилиндра. Нижний установочный пояс гильз уплотняют с помощью резиновых или медных колец. Резиновые кольца чаще всего круглые, примерно 4-миллиметровые в количестве 2…3 шт. ставят с натягом обычно на нижнем утолщенном установочном поясе гильзы в специально сделанные для этой цели проточки (рис. 6,а).

1 – блок-картер; 2 – рубашка охлаждения; 3 – вставка; 4 – гильза цилиндра; 5 – уплотнительные кольца (резиновые или медные, устанавливаемые под бурт); 6 – антикавитационное кольцо; 7 – медная прокладка

Если резиновые кольца не ставят на гильзу, то ее нижний установочный пояс изготовляют без утолщения (рис. 6,б). Глубину проточек делают меньше сечения резинового кольца, поэтому последние несколько выступают из канавок, а при установке гильзы в гнездо деформируются и надежно уплотняют стык. При использовании резиновых колец прямоугольного сечения нижний установочный пояс снабжают буртиком. Уплотнительное кольцо надевают с натягом непосредственно на нижний установочный пояс гильзы, а в центрирующем гнезде цилиндра делают соответствующий уступ, к которому резиновое кольцо плотно прижимается буртиком гильзы (рис. 6,в). Применение медного уплотнительного кольца показано на рис. 6,г. Легкосъемные гильзы при этом имеют только один удлиненный нижний установочный пояс, к которому вплотную примыкает опорный фланец гильзы. Между этим опорным фланцем и уступом в центрирующем гнезде цилиндра и зажимают уплотнительное кольцо. Это же кольцо используется для регулирования положения гильзы по высоте. В верхней зоне цилиндра такая гильза совсем не соприкасается со стенками рубашки охлаждения, а имеет только небольшое утолщение, которое улучшает уплотнение, ее газового стыка, достигаемого с помощью прокладки, которую устанавливают между цилиндром и его головкой. Однако данная конструкция гильзы приводит к некоторому короблению ее при затяжке головки цилиндров.

Для обеспечения уплотнения газового стыка верхняя торцовая плоскость гильзы выступает над плоскостью блока на 0,05…0,15 мм.

В дизелях под действием значительных динамических нагрузок при перекладке поршня стенки гильзы могут совершать колебания в радиальном направлении. Так как стенки гильзы окружены жидкостью, то в ней может начаться кавитация, что приводит к износу, а иногда и разрушению внешней поверхности гильзы и блока.

Для предотвращения кавитационного разрушения на гильзах некоторых двигателей протачивают специальную канавку, в которую вставляют антикавитационное кольцо 6 (рис.6,а) прямоугольного сечения. Оно расположено между гильзой и отверстием в блоке цилиндров и, кроме того, через него нижний пояс гильзы опирается на кромку отверстия блока. В сборе с гильзой кольцо устанавливают в блок с натягом, что уменьшает амплитуду колебаний гильзы цилиндров.

В бензиновых двигателях, вследствие меньших максимальных нагрузок и более плавной перекладки поршня, явления кавитации практически не наблюдается.

Опишите устройство блока цилиндров двигателя КамАЗ. Как уплотняются гильзы цилиндров от утечки жидкостей и газов

2. Опишите устройство блока цилиндров двигателя КамАЗ. Как уплотняются гильзы цилиндров от утечки жидкостей и газов

Блок цилиндров – основная деталь двигателя, к которой крепятся все механизмы и детали. Блок цилиндров КамАЗ (рисунок 1) представляет собой массивный литой корпус 6, снаружи и внутри которого монтируются все механизмы и системы. Нижняя часть блока является картером 7, в литых поперечинах которого расположены опорные гнезда для подшипников 2 коленчатого вала. Такую отливку называют блок-картером 1.

В средней части блока цилиндров имеются отверстия 3 для установки подшипников скольжения под опорные шейки распределительного вала.

Цилиндры в блоке расположены V-образно в два ряда под углом в 90 градусов.

Блок цилиндров отливают из чугуна. Он имеет отверстия для подвода и слива охлаждающей жидкости, каналы для подвода масла.

Рисунок 1. – Блок цилиндров двигателя КамАЗ

Элементы блока цилиндров при осуществлении рабочего процесса воспринимают действующие в двигателе силы давления газов и неуравновешенные инерционные нагрузки. Для придания большей жесткости блоку плоскость разъема между блоком и поддоном смещают вниз от оси коленчатого вала на 102 мм.

Помимо этого правый блок цилиндров смещен относительно левого назад на 29,5 мм. Такое смещение необходимо для установки двух шатунов на каждой шатунной шейки коленчатого вала.

В блок устанавливают гильзы 5, омываемые охлаждающей жидкостью, поэтому называемыми мокрыми.

Полость между гильзой цилиндра и стенками блока 8 называется рубашкой охлаждения. Охлаждающая жидкость подается в рубашку охлаждения через два канала 4, расположенных по обеим сторонам блока цилиндров.

Изготавливается литьем из специального чугуна, внутреннюю часть подвергают закалке ТВЧ.

Рабочая поверхность цилиндров является направляющей при движении поршня и вместе с ним и головкой блока цилиндров образует замкнутое пространство, в котором происходит рабочий цикл двигателя. Для плотного прилегания поршня и поршневых колец к цилиндру и уменьшения сил трения между ними внутреннюю полость вставных гильз тщательно обрабатывают с высокой степенью точности и чистоты, поэтому она называется зеркалом цилиндра.

При сгорании рабочей смеси верхняя часть цилиндров сильно нагревается и подвергается окислительному воздействию продуктов сгорания, поэтому для увеличения срока службы гильз цилиндров в наиболее изнашиваемую (верхнюю) их часть запрессовывают короткие тонкостенные гильзы из износостойкого антикоррозионного чугуна. Применение такой вставки снижает износ верхней части гильзы в 2…4 раза.

Уплотнение гильз цилиндров КамАЗ от утечки жидкостей и газов осуществляется: сверху – за счет прокладки головки цилиндра; внизу – двумя резиновыми кольцами.

3. Опишите устройство термостата ЗиЛ-130 и покажите на схемах пути движения жидкости при различных температурах двигателя

Термостат предназначен для ускорения прогрева холодного двигателя и автоматического поддержания его теплового режима в заданных пределах. Конструктивно он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.

На двигателях ЗиЛ-130 применяют термостаты с твердым наполнителем. Термостат ЗиЛ-130 (рисунок 1) с твердым наполнителем, размещен между верхним и нижним патрубками водяной рубашки, служит для ускорения прогрева холодного двигателя и предохранения его от переохлаждения. При прогреве холодного двигателя канал, соединяющий рубашку двигателя с радиатором, перекрыт заслонкой 7 термостата.

Рисунок 1. – Схема устройства и работы термостата ЗиЛ-130

а – термостат в закрытом положении; б – термостат в открытом положении; 1 – баллон термостата; 2 – активная масса (церезин); 3 – мембрана; 4 – направляющая втулка; 5 – шток; 6 – возвратная пружина; 7 – заслонка термостата; 8 – верхний патрубок; 9 – коромысло заслонки; 10 – корпус термостата; 11 – буфер; 12 – рант; 13 – нижний патрубок.

Охлаждающая жидкость через перепускной патрубок, соединяющий нижний выпускной патрубок водяной рубашки с всасывающей полостью корпуса подшипников водяного насоса, интенсивно циркулирует, минуя радиатор, что ускоряет прогрев двигателя. Эта циркуляция сохраняется и при полностью открытом термостате. При достижении охлаждающей жидкостью температуры 70—83°С церезин (нефтяной воск) 2, заключенный в баллон 1 термостата, плавится и, увеличивая свой объем, вызывает перемещение штока 5 вверх и открывает заслонку 7, после чего охлаждающая жидкость начинает циркулировать через радиатор. При снижении температуры церезин уменьшает свой объем, и заслонка под действием пружины закрывается.

4. Опишите, как происходит очистка масла в двигателе ЗМЗ-53А. Покажите на схеме, как работает масляный фильтр

Масляные фильтры служат для очистки масла в системе от механических примесей, которые появляются из-за износа трущихся деталей, попадания пыли из воздуха, образования нагара и отложения смолистых веществ. В двигателе ЗМЗ-53А используют фильтры тонкой очистки со сменными фильтрующими элементами (рисунок 1).

Центробежный маслоочиститель двигателя ЗМЗ-53А со сменным фильтрующим элементом состоит из составного корпуса — части 5 и 12, проставки 13 и бумажного фильтрующего элемента. Фильтрующий элемент включает в себя наружный 2 и внутренний 3 перфорированные цилиндры, две крышки 1 и помещенную между ними ленту 4 из пористой фильтровальной бумаги, которая для увеличения фильтрующей поверхности уложена гармошкой. Фильтр является полнопоточным. Фильтры называют полнопоточными, если через них проходит весь поток масла, циркулирующий в системе.

В его корпусе фильтрующий элемент плотно зажат пружиной 6 между уплотнительным кольцом 7 и прокладкой 17.

Рисунок 1. – Масляный фильтр двигателя ЗМЗ-53А

а – фильтрующий элемент; б — устройство фильтра; 1 — крышка; 2, 3 — соответственно наружный и внутренний цилиндры; 4 — бумажная лента; 5, 12 — части корпуса; 6, 8— пружины; 7— уплотнительное кольцо; 9— перепускной клапан; 10 — пустотелый стержень; 11 — прокладка; 13 — проставка; 14 — соединительный штуцер; А и Б — полости.

Читать еще:  Лукойл промывка двигателя

Составные части корпуса и проставка стянуты пустотелым стержнем и соединительным штуцером 14. При работающей системе масло нагнетается насосом через стержень 10 в корпус. При работе двигателя масляный насос нагнетает масло в маслоочиститель, под давлением масло просачивается сквозь поры бумажной ленты, оставляя на ее поверхности загрязняющие примеси. Пройдя в кольцевую щель между внутренним цилиндром и стержнем, очищенное масло поступает в проставку и выходит из фильтра в масляную магистраль для смазывания трущихся деталей.

При загрязнении фильтрующего элемента и охлажденном масле, поступающем под давлением, открывается перепускной клапан 9 и масло направляется в масляную магистраль, минуя фильтр.

1. Шароглазов Б. А., Фарафонтов М. Ф., Клементьев В. В. Двигатели внутреннего сгорания: теория, моделирование и расчёт процессов: Учебник по курсу «Теория рабочих процессов и моделирование процессов в двигателях внутреннего сгорания». – Челябинск: Изд. ЮУрГУ, 2004.

2. Автомобильные двигатели. Под ред. М.С. Ховаха. М., «Машиностроение», 1977.

3. Двигатели КамАЗ-740.11-240, 740.13-260, 740.14-300: Руководство по эксплуатации, техническому обслуживанию, ремонту (под ред. Гатауллина Н.А.). М.: РусьАвтокнига, 2002.

4. Автомобиль ЗИЛ-130. Руководство по эксплуатации. М.: 1994.

5. Технические условия на капитальный ремонт автомобилей ГАЗ-53А. (под ред. Яблокова В.И.). М.: Транспорт, 1968.

Ремонт гильз цилиндров своими руками

Состояние гильз цилиндра в значительной мере определяет ресурс двигателя. В переводе с нем. гильза – оболочка. А для того, чтобы понять в каких случаях производится ремонт гильз цилиндров, и что он собой представляет, разберемся с тем, какой бывает гильза цилиндра.

Какая она, гильза цилиндра

На современных легковых автомобилях применяются две группы гильз:

  • «мокрые» гильзы — данный тип гильз конструктивно соприкасается с охлаждающей жидкостью двигателя. Комплектуются уплотнительными прокладками для предотвращения попадания газов в охлаждающую жидкость и наоборот. Гильза цилиндра этой группы более ремонтопригодная.
  • «сухие» гильзы – гильза цилиндра данной группы в некоторых двигателях заливается в блок при изготовлении. Естественно, они не соприкасаются с охлаждающей жидкостью, отсюда и название.

Основными свойствами, которыми должна обладать гильза цилиндра, являются: износостойкость, прочность, высокая антикоррозийная устойчивость. Конструктивные особенности гильз должны обеспечивать надёжность уплотнений в местах стыка гильзы с ГБЦ и блоком цилиндров.

Ремонт гильз цилиндров

Как правило, восстановление ресурса двигателя возможно при помощи метода гильзования. Для этого производителем предусмотрены ремонтные гильзы (втулки). Согласитесь, что ремонт блока цилиндров, ремонт ГБЦ и ремонт гильз цилиндров, это намного более дешёвая процедура, чем покупка нового двигателя.

Ремонт гильз цилиндров в блоках из разных материалов (чугун, алюминий) отличается по своей технологии.

  • «сухие» гильзы, как правило, устанавливаются способом термической обработки, или устанавливаются холодным способом, т.е. с применением специализированного оборудования.
  • «мокрые» гильзы проще поддаются ремонту, так как вставляются и удаляются при ремонте блока цилиндров, вручную.

Не является обязательным условием при ремонте гильз, их замена во всех цилиндрах. Во время диагностики цилиндров блока выявляется, какая гильза цилиндра требует ремонта (замены).

Реконструкция блока цилиндров

Этот процесс начинается с расточки цилиндров под гильзы. На качество расточки очень сильно влияет ресурс ремонтируемого двигателя. Расточка блока позволяет добиться как необходимого размера, так и правильной геометрии гнёзд.

Если расточка проведена неправильно, то эллипсоидная геометрия гнезда, после гильзования передастся самой гильзе. Для придания точности и необходимой гладкости поверхности гнёзд, после расточки их подвергают хонингованию.

Процедура гильзования

Если с «мокрыми» гильзами процедура гильзования более менее понятна, в силу конструктивных особенностей, то гильзование «сухих» гильз цилиндра вам вряд ли удастся провести своими руками в гараже.

Горячее гильзование производится с учетом разницы температур. Блок цилиндров нагревается при помощи газовой горелки до температуры 120-150 0 . После этого в подготовленное гнездо вставляется охлаждённая гильза.

Монтажу гильзы цилиндра предшествует её обработка специальным составом для избавления от водяного конденсата. Метод горячего гильзования «сухих» гильз цилиндра является самым качественным.

В силу особенностей структуры материала цилиндры блоков, выполненные из галникала, не поддаются расточки. Поэтому в такие блоки цилиндров при ремонте производится запрессовка алюминиевых гильз.

Критерии качества гильзы цилиндра

Форма. Конусность и эллипсность гильзы не должна выходить за пределы 0,02 мм. Разность толщины стенки не должна превышать 0,01 мм.

Поверхность. Шлифовка поверхности гильзы цилиндра выполняется не ниже 8-10 класса точности, иначе через некоторое время вам вновь понадобится ремонт двигателя.

Выбор гильз. Ремонтные гильзы выбираются по каталогу с учетом припуска для последующей расточки. Допустимый разнос может быть не более 0,5 мм.

Удачи вам при проведении ремонта гильз цилиндров.

Особенности конструкции гильз цилиндров

Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него расположены основные механизмы и детали систем двигателя. Блок цилиндров – это сложная отливка коробчатой формы. Он может быть отлит из легированного серого чугуна (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ-53А, ГАЗ-24 «Волга», ГАЗ-3102 «Волга», ГАЗ-53-12 и др.). После литья блок цилиндров подвергают искусственному старению, что уменьшает его коробление в процессе эксплуатации и обеспечивает сохранность правильной геометрической формы.

Поверхность блока цилиндров используется в качестве рабочей только в некоторых автомобильных и тракторных двигателях с небольшим диаметром цилиндра. У большинства современных двигателей жидкостного охлаждения цилиндр, где перемещается поршень, выполняется в виде мокрой гильзы, омываемой снаружи охлаждающей жидкостью, либо в виде сухой гильзы, устанавливаемой по всей длине цилиндра или в верхней его части, где наблюдается максимальный износ (рис. 1.1).

Рис. 1.1. Гильзы блока цилиндров

Гильза занимает среди теплонапряженных деталей двигателя особое место как по выполняемым функциям, так и по предъявляемым к ней требованиям. Обеспечение только одной прочности гильзы, несмотряна всю важность этого требования, недостаточно для длительной и надежной работы двигателя. [3]

Сухие гильзы толщиной 2-4 мм (рис. 1.1, в, г) запрессовывают или устанавливают с зазором 0,01-0,04 мм. Небольшая толщина сухих гильз обусловливает при их применении экономию качественных материалов, однако повышенное термическое сопротивление контактной поверхности между гильзой и блоком ухудшает теплоотвод от цилиндра в охлаждающую жидкость. Вследствие этого в форсированных двигателях, как правило, применяют мокрые гильзы-втулки, обеспечивающие лучшую теплопередачу и легко заменяемые в случае повреждения. Кроме того, при их использовании упрощается литье блока цилиндров. Однако жесткость блока уменьшается, появляется дополнительная возможность для развития кавитационных явлений в полости охлаждения в результате повышенных вибраций мокрых гильз.

В зависимости от способа установки в блоке цилиндров можно выделить гильзы, опирающиеся буртом на верхнюю плиту блока, и так называемые подвесные, когда гильза, соединенная с крышкой цилиндра относительно тонкими шпильками, образует с последней узел, закрепляемый в корпусе основными силовыми шпильками.

Первый вид гильз наиболее распространен и применяется в двигателях всех типов. Конструкция гильзы должна обеспечить, с одной стороны, невысокий уровень напряжений от монтажных усилий и газовой нагрузки, а с другой – умеренный уровень температур и температурных напряжений.

В автомобильных и тракторных дизелях применяют мокрые гильзы, отливаемые из чугуна, с верхним опорным фланцем (см. рис. 1.1, а, б и рис. 1.2). Опорная площадь фланца, ограниченная диаметрами D1 и D2, составляет 8-15% площади поршня. При этом давление от сил затяжки шпилек, крепящих головку цилиндра к блоку, на кольцевой поверхности (DtD2) не должно превышать 380-420 МПа для чугунных и 140-180 МПа для алюминиевых блоков. С увеличением разности D2D1 повышается напряжение изгиба в верхнем поясе. Высота h фланца составляет 7-10% диаметра цилиндра D.

Рис. 1.2. Способы опирания гильзы цилиндра в блоке:

а – верхним опорным поясом; б, в-нижним опорным поясом

Для повышения герметичности газового стыка на фланце втулки выполняют кольцевой буртик шириной 2-5 мм, выступающий над плоскостью блока на величину S, достигающую 0,15 мм и зависящую от типа уплотняющей прокладки и диаметра цилиндра. Основное усилие приходится на зону выступающего буртика, где контактное давление достигает 145-200 МПа и часто неравномерно распределено по окружности. В результате этого искажается форма рабочей поверхности цилиндра и снижается работоспособность цилиндро-поршневой группы, увеличивается расход масла. [1]

В некоторых карбюраторных двигателях, где меньше усилия, действующие на втулку, ее опорный фланец иногда значительно смещают от верхней плоскости блока (рис. 1.2, б, в). При этом уменьшается температура верхней части втулки и соответственно поршневых колец.

Внутреннюю поверхность цилиндра, внутри которой перемещается поршень, называют зеркалом цилиндра. Эту поверхность подвергают закалке с нагревом токами высокой частоты для повышения износостойкости и долговечности и тщательно обрабатывают для уменьшения трения при движении в цилиндре поршня с кольцами. Гильзы в блок цилиндров устанавливают так, чтобы охлаждающая жидкость не проникала в них и в поддон, а газы не прорывались из цилиндра. Предусмотрена возможность изменения длины гильз в зависимости от температуры двигателя. Для фиксации вертикального положения гильзы имеют специальный бурт для упора в блок цилиндров и установочные пояса. Мокрые гильзы в нижней части уплотняют резиновыми кольцами, размещаемыми в канавках блока цилиндров (двигатели автомобиля КамАЗ-5320), в канавках гильз (двигатели автомобилей МАЗ-5335, ЗИЛ-130 и др.), или медными кольцевыми прокладками, устанавливаемыми между блоком и опорной поверхностью нижнего пояса гильзы (рис. 1.1, г). Для правильной установки в блоке и сохранения формы при работе гильзу центрируют по двум направляющим поясам, при этом диаметр верхнего пояса несколько больше, чем нижнего, в котором для обеспечения удлинения гильзы при работе предусматривается зазор 0,05-0,13 мм по свободной посадке. Верхний торец гильзы выступает над плоскостью блока цилиндров на 0,02 – 0,15 мм, что способствует лучшему обжатию прокладки головки блока и надежному уплотнению гильзы, блока и головки блока. [3]

Интенсивность кавитации, приводящей к разрушению цилиндров, снижают при помощи ряда мероприятий: уменьшают зазоры между поршнем и втулкой; специально профилируют юбку поршня; используют замкнутую систему охлаждения; повышают стойкость поверхностей путем их химико-термической обработки; увеличивают проходные сечения охлаждающей полости, а также используют эмульсионные присадки, и, наконец, повышают жесткость гильзы и закрепляют ее более прочно. Повышение жесткости достигается применением упрочняющих ребер на наружной поверхности гильзы, так как при увеличении толщины ее стенки повышается тепловая напряженность.

Распространенная продольно-диагональная схема (рис. 1.3, а) обтекания имеет ряд недостатков, выражающихся в снижении интенсивности теплоотдачи в верхней наиболее нагретой части гильзы, большой неравномерности температурного поля гильзы и опасности возникновения объемного кипения в застойных зонах.

Рис. 1.3. Схемы охлаждения гильз блока цилиндров:

а – продольно-диагональная; б – с поперечным обтеканием

На рис. 1.3, б представлена исследованная в НАТИ схема с верхним подводом охлаждающей жидкости и поперечным обтеканием.

Основное отличие этой схемы заключается в наличии кольцевой щели с радиальной шириной (0,03-0,04) D, которая является верхней частью полости охлаждения. Данная схема обеспечивает допустимый уровень температур во втулке (150-160 °С) при форсировании дизелей до 22,5 кВт/л, а также более равномерное распределение температур по длине и периметру гильзы.

Для гильз используют серые чугуны, например СЧ 30, СЧ 35, легированные хромом, никелем, молибденом, которые имеют перлитную структуру с достаточным количеством графита в виде пересекающихся пластин. Легирование чугуна повышает его прочностные свойства, износостойкость и жаростойкость. Применение пористого хромирования позволяет получить значительную поверхностную твердость и уменьшить износ чугунных гильз (в 2,5-4,5 раза в зависимости от вида топлива). [2]

Двигатели, имеющие цилиндры, изготовленные в виде сменных мокрых гильз (двигатели автомобилей ГАЗ-53А, ГАЗ-55-12, ЗИЛ-130, МАЗ-5335, КамАЗ-5320 и др.), проще ремонтировать и эксплуатировать. Блок цилиндров, отлитый вместе с цилиндрами, сложнее ремонтировать, так как если вышел из строя хотя бы один цилиндр (например, в результате задира зеркала цилиндра), то нужно растачивать и шлифовать все цилиндры.

Читать еще:  Как найти трещину в гбц

Материал гильз должен обеспечивать наряду с износостойкостью высокую плотность, определяемую гидравлическим испытанием гильз при давлении воды, превосходящим рабочее давление газов. В форсированных двигателях применяют гильзы из легированных высокопрочных чугунов с азотированной поверхностью, имеющие повышенные прочностные характеристики. В этом случае особое внимание обращают на улучшение антифрикционных свойств рабочих поверхностей поршней и колец.

В форсированных высокооборотных двигателях для изготовления гильз применяют сталь типа 45Х, а также азотируемые стали типа 38ХМЮА, обусловливающие получение легкой тонкостенной конструкции [3].

Изображения гильз различных марок, а также в каких двигателях применяются те или иные гильзы можно посмотреть в приложении 1.

«Азотная» технология: ремонт без ошибок

Это случилось несколько лет назад. Привезли на СТО «Мерседес» с неисправным двигателем. Мотор, естественно, сняли, разобрали и ужаснулись – в блоке цилиндров трещина, прямо по одному из цилиндров. Менять блок на новый? Никакого смысла – слишком дорого. «Бэушный» тоже не выход – подобные блоки все сплошь «без документов». Остается одно – ремонтировать.

Силами СТО такой ремонт не сделать – нет оборудования. Поэтому блок отвезли в специализированную мастерскую, где поврежденный цилиндр «загильзовали». То есть расточили и поставили ремонтную гильзу – нормальный и общепринятый способ ремонта. И ходить бы мотору и дальше «долго и счастливо», если бы через месяц после ремонта гильза не потекла: антифриз из-под головки блока начал просачиваться через гильзу в картер.

Двигатель пришлось разобрать и переделывать заново. Механики виновато оправдывались перед недовольным клиентом: они-то все сделали правильно, просто блок плохо отремонтировали. В мастерской блок «перегильзовали», естественно, бесплатно, но потери денег, времени и нервов у мотористов СТО от такого «ремонта» оказались весьма значительными.

В чем же была ошибка, если и гильза изготовлена аккуратно, и блок расточен точно, и натяг гильзы в блоке выдержан? Попробуем это выяснить, но вначале разберемся.

Зачем нужен натяг?

Итак, есть гильза, которую необходимо установить в отверстие корпуса. Очевидно, после установки гильза должна надежно держаться в отверстии, т.е. не болтаться, иначе в процессе работы гильза и поверхность отверстия будут быстро повреждены ударными нагрузками. Но главное – это герметичность и хороший тепловой контакт между гильзой и поверхностью отверстия. Последнее определяет тепловой режим работы самой гильзы и ответной детали, расположенной внутри гильзы (к примеру, поршня). Нарушение теплового контакта или, как еще говорят, большое термическое сопротивление на поверхности стыка гильзы и корпуса может привести к перегреву самой гильзы и, особенно, ответной ей внутренней детали с последующим ее повреждением (задиры, прогар, разрушение). Исключить эти нежелательные последствия удается, если гильзу поставить в отверстие корпуса с натягом.

Натяг – это, как известно, разница между наружным диаметром гильзы и диаметром отверстия. То есть гильза больше, чем отверстие. При этом важны два обстоятельства – величина натяга и способ установки гильзы в отверстие меньшего размера, чтобы удовлетворить требованиям герметичности и низкого термического сопротивления.

Как выбрать натяг?

Величина натяга – это не просто разница в диаметрах. Ее значение сильно различается в зависимости от диаметра, длины, толщины, условий работы и материалов деталей. Вот только несколько примеров.

Длинная (около 150 мм) гильза из чугуна устанавливается в чугунный блок цилиндров. Условия работы довольно «мягкие» – трение колец и поршня о стенки. Оптимальная величина натяга 0,04-0,06 мм. Меньший натяг ухудшит теплопередачу от поршня в охлаждающую жидкость, больший – приведет к чрезмерной деформации соседних цилиндров. В то же время при установке такой же гильзы в алюминиевый блок надо учитывать разницу в коэффициентах температурного расширения материалов: величину натяга следует увеличить до 0,06-0,07 мм, чтобы гильза не ослабла при нагреве блока. Напротив, мягкую алюминиевую гильзу в такой блок можно поставить с натягом всего 0,02-0,03 мм без какой-либо опасности ослабления посадки.

Седло клапана имеет малую длину, но сильно нагревается и испытывает высокие ударные нагрузки при работе клапана. Из-за таких «жестких» условий работы натяг седла в отверстии головки блока должен быть не ниже 0,10-0,12 мм, хотя диаметр седла весьма невелик – в среднем 40-45 мм. В то же время для направляющих втулок клапанов и сталебронзовых втулок верхней головки шатуна (ВГШ) вполне достаточно натяга 0,03-0,05 мм. В первом случае надежная посадка при малом натяге обеспечена сравнительно большой длиной направляющей втулки, а во втором – однородностью материалов (сталь) шатуна и основы втулки.

Теперь, когда натяг выбран, обеспечен соответствующей мехобработкой деталей и подтвержден измерениями, попробуем запрессовать гильзу или втулку в отверстие корпуса. Сделать это можно разными способами.

Как запрессовывают гильзы?

Простейший, но наихудший, способ запрессовки – забить деталь в корпус кувалдой. Результат очевиден – придется гильзу выбивать обратно или вырезать и начинать все сначала. Почему?

Чтобы запрессовать тонкую гильзу с натягом в 0,05 мм, потребуется усилие в несколько сотен, а то и тысяч килограмм, что при ударном характере этого усилия скорее всего приведет к ее растрескиванию. Кроме того, при большом давлении на поверхность возможно появление задиров, резко увеличивающих усилие запрессовки и вызывающих потерю герметичности соединения.

Последнее особенно характерно для разнородных материалов – к примеру, твердой чугунной детали и мягкого алюминиевого корпуса. К тому же алюминиевый сплав имеет свойство не только легко «сдираться» гильзой, как резцом, но и уплотняться (нагартовываться), в результате чего от исходной величины натяга останется едва ли больше 0,02-0,03 мм. Ну а алюминиевую деталь в алюминиевый корпус вообще «не загнать» – детали намертво «схватятся» друг с другом, и будет разрушена не только гильза, но скорее всего, и корпус тоже.

От ударной запрессовки почти не отличается способ установки гильзы с помощью пресса (винтового или гидравлического). Разница лишь в том, что отсутствуют ударные нагрузки. Все остальные недостатки запрессовки «из-под кувалды» сохранятся.

Несмотря на очевидную вредность подобных способов запрессовки, они достаточно живучи – в некоторых мастерских все еще можно увидеть и кувалду, и пресс в действии. А потому не стоит удивляться, когда после такой «работы» текут гильзы цилиндров или выпадают седла клапанов.

Что же делать? Очевидно, необходимо резко снизить усилия при запрессовке. Речь, конечно, не идет об уменьшении натяга – он должен быть задан жестко. А вот увеличить зазор при запрессовке детали в корпус вполне возможно.

Создать такие условия при монтаже поможет известная способность материалов расширяться при нагреве и соответственно сжиматься при охлаждении. Охватывающую деталь (корпус) можно нагреть, а охватываемую (гильзу) охладить так, что натяг превратиться в зазор. Тогда поставить гильзу можно будет даже «от руки», без каких-либо усилий.

Действительно, простейший расчет показывает, что если чугунный блок цилиндров нагреть до 150°С, то диаметр гнезда под гильзу (100 мм) увеличится на 0,13 мм. Тогда при монтаже получаем зазор около 0,07 мм даже без охлаждения гильзы. В алюминиевом блоке зазор будет еще выше – около 0,2 мм, за счет большего коэффициента температурного расширения алюминиевого сплава. Теперь достаточно лишь точно и быстро (чтобы не произошло выравнивания температуры деталей!) установить гильзу в блок «от руки», не прикладывая при этом никаких дополнительных усилий.

Именно такая схема применяется сейчас в большинстве мастерских и техцентров, ремонтирующих и восстанавливающих моторные детали. Тем не менее данный способ, хотя и дает минимальный процент брака, не всегда удачен, и вот почему.

Для нагрева корпусной детали приходится применять большие электропечи. Без сомнения, это большие затраты электроэнергии, да и печь – оборудование не из дешевых. Ее необходимо устанавливать в отдельном помещении с хорошей вентиляцией, что тоже недешево, иначе работать там будет так же трудно, как сталевару у мартена. Кроме того, деталь нагревается в печи целиком до температуры намного выше рабочей, что может вызвать ее деформацию и потребовать последующую дополнительную обработку некоторых поверхностей (плоскости, постели подшипников).

Но это, так сказать, вопросы финансово-организационного характера, которые можно решить один раз и больше к ним не возвращаться. А вот некоторые технические проблемы при таком способе запрессовки не решить.

Допустим, на цилиндре в средней его части имеется трещина. После расточки гнезда и установки гильзы трещина перекроется гильзой. Только будет ли отремонтированный блок герметичен? Совсем не обязательно – натяг невелик, поверхности сопряжения не идеальны.

Конечно, можно нанести на поверхность перед сборкой герметик, который заполнил бы микронеровности, особенно, вокруг трещины, и не дал бы затем охлаждающей жидкости найти себе путь из рубашки охлаждения в камеру сгорания или картер. Только вот беда: на нагретом блоке герметик немедленно полимеризуется. Если же наносить герметик на гильзу, то при ее установке он легко задерживается ступенькой в верхней части гнезда, не обеспечивая необходимого уплотнения трещины. В результате резко возрастает опасность потери герметичности.

Получается, выхода нет? Почему же, есть, причем намного проще, чем кажется на первый взгляд.

Не в жар, а в холод!

А зачем, собственно говоря, нагревать именно блок? Давайте охладим гильзу. Тогда и печь не понадобиться, и помещения отдельного не нужно, и электроэнергию можно сэкономить.

А чем охлаждать? Тоже не проблема: есть такой газ, которого в атмосфере больше всего, азот. При охлаждении азота до температуры -186 o С он превращается в жидкость, абсолютно прозрачную и бесцветную. Только хранить жидкий азот надо в большом термосе – сосуде Дюара, иначе он быстро испарится.

Многие производства и медицинские учреждения используют жидкий азот в своих технологических процессах, поэтому приобрести его не cложно. Кроме того, это экологически чистый газ, не требующий каких-либо специальных мер или средств защиты, за исключением, пожалуй, перчаток, чтобы не «обжечь» холодом руки.

Именно на использовании жидкого азота и построены все технологии запрессовки деталей в Cпециализированном моторном центре. Суть процесса предельно проста. В пластиковое «корыто» нужного размера помещаем гильзы (седла, втулки) и заливаем их на 2/3 азотом. После того, как кипение азота прекратится (это значит, что детали «приняли» температуру жидкости), вытаскиваем их из жидкости и легко устанавливаем в гнездо блока. Причем гораздо легче, чем после нагрева блока (получить такой же зазор можно только при нагреве блока до 220°С, опасном температурными деформациями).

Также легко решается проблема герметичности гильзы: на гнездо в блоке снизу и сверху перед установкой гильзы наносится специальный жидкий герметик. Теперь герметичность гарантирована – зазор при установке большой, гильза не потащит герметик за собой, а полимеризация наступит не раньше принятия гильзой температуры блока. Это подтверждено испытаниями блоков на герметичность – случаи течи гильз при использовании данной технологии в настоящее время не известны.

Немалые преимущества «азотная» технология дает и при ремонте головок блока цилиндров. Чтобы убедиться в этом, достаточно посчитать, насколько надо нагреть алюминиевую головку, чтобы чугунное седло диаметром 40 мм, имеющее натяг в гнезде 0,12 мм, «провалилось» в гнездо свободно. Ответ обескураживает: до 240 o С! Если же седло охлаждается в жидком азоте, то головку блока достаточно нагреть всего до 100 o С. Для такого нагрева специальной мощной электропечи уже не потребуется.

С помощью азота можно легко выполнить и другие работы – запрессовать направляющие втулки клапанов или втулки ВГШ. Отметим при этом, что жидкий азот относительно дешев – намного дешевле, чем электричество для разогрева деталей в электропечи.

Ссылка на основную публикацию
×
×
Adblock
detector