Твин турбо что это
Autoservice-ryazan.ru

Автомобильный портал

Твин турбо что это

Система Twin Turbo

Система турбонаддува, в которой используется два турбокомпрессора, носит название Twin Turbo. Изначально два турбокомпрессора применялись для преодоления инерционности системы, т.н. турбозадержки (турбоямы). В дальнейшем область применения спаренных турбокомпрессоров расширилась и в настоящее время позволяет значительно повышать выходную мощность, поддерживать номинальный крутящий момент в широком диапазоне оборотов двигателя, снижать удельный расход топлива.

Различают три конструктивные схемы системы Twin Turbo: параллельную, последовательную и ступенчатую. Схемы различаются характеристиками, расположением и порядком работы турбокомпрессоров. Работу турбокомпрессоров регулирует электронная система управления, включающая входные датчики, блок управления и приводы клапанов управления потоком воздуха и отработавших газов.

Twin Turbo – торговое название системы турбонаддува, другое используемое название (синоним) Biturbo. В некоторых истониках информации под названием Biturbo понимается система с параллельной схемой работы турбокомпрессоров, что не совсем верно.

Параллельный Twin Turbo

Система параллельного Twin Turbo включает два одинаковых турбокомпрессора, работающих одновременно и параллельно друг другу. Параллельная работа реализуется путем равномерного разделения потока отработавших газов между турбокомпрессорами. Сжатый воздух от каждого компрессора поступает в общий впускной коллектор и далее распределяется по цилиндрам.

Параллельный Twin Turbo применяется в основном на V-образных дизельных двигателях. Каждый турбокомпрессор закреплен на своем выпускном коллекторе. Эффективность параллельной схемы турбонаддува базируется на том, что две небольшие турбины имеют меньшую инерционность, чем одна большая. За счет этого сокращается «турбояма», турбокомпрессоры работают на всех оборотах двигателя, обеспечивая быстрое повышение давления наддува.

Последовательный Twin Turbo

Система последовательного Twin Turbo включает два соизмеримых по характеристикам турбокомпрессора. Первый турбокомпрессор работает постоянно, второй включается в работу при определенных режимах работы двигателя (частота оборотов, нагрузка).

Переход между режимами обеспечивает электронная система управления, которая регулирует поток отработавших газов ко второму турокомпрессору с помощью специального клапана. При полном открытии клапана управления подачей отработавших газов оба турбокомпрессора работают параллельно, поэтому правильно систему называть последовательно-параллельная. Сжатый воздух от двух турбокомпрессоров подается в общий впускной коллектор и распределяется по цилиндрам.

Система последовательного Twin Turbo минимизирует последствия турбозадержки и позволяет достичь максимальной выходной мощности. Применяется на бензиновых и дизельных двигателях. В 2011 году компания BMW представила систему с тремя последовательными турбокомпрессорами – Triple Turbo.

Двухступенчатый турбонаддув

Самой совершенной в техническом плане является система двухступенчатого турбонаддува. С 2004 года система двухступенчатого турбонаддува применяется на ряде дизельных двигателей от Opel. Другой производитель – компания BorgWarner Turbo Systems внедряет систему на дизельные двигатели BMW и Cummins.

Система двухступенчатого турбонаддува состоит из двух турбокомпрессоров разного размера, установленных последовательно в выпускном и впускном (воздушном) трактах. В системе используется клапанное регулирование потока отработавших газов и нагнетаемого воздуха.

При низких оборотах двигателя перепускной клапан отработавших газов закрыт. Отработавшие газы проходят через малый турбокомпрессор (имеет минимальную инерцию и максимальную отдачу) и далее через большой турбокомпрессор. Давление отработавших газов невелико. Поэтому большая турбина почти не вращается. На впуске перепускной клапан наддува закрыт. Воздух проходит последовательно через большой (первая ступень) и малый (вторая ступень) компрессоры.

С ростом оборотов осуществляется совместная работа турбокомпрессоров. Перепускной клапан отработавших газов постепенно открывается. Часть отработавших газов идет непосредственно через большую турбину, которая раскручивается все более интенсивно. На впуске большой компрессор сжимает воздух с определенным давлением, но оно недостаточно большое. Поэтому далее сжатый воздух поступает в малый компрессор, где происходит дальнейшее повышение давления. Перепускной клапан наддува при этом по прежнему закрыт.

При полной нагрузке перепускной клапан отработавших газов открыт полностью. Газы практически полностью проходят через большую турбину, раскручивая ее до максимальной частоты. Малая турбина останавливается. На впуске большой компрессор обеспечивает максимальное давление наддува. Малый компрессор, наоборот, создает препятствие для воздуха, поэтому в определенный момент открывается перепускной клапан наддува и сжатый воздух поступает напрямую к двигателю.

Таким образом, система двухступенчатого турбонаддува обеспечивает эффективную работу турбокомпрессоров на всех режимах работы двигателя. Система разрешает известное противоречие дизельных двигателей между высоким крутящим моментом на низких оборотах и максимальной мощностью на высоких оборотах. С помощью двухступенчатых турбокомпрессоров номинальный крутящий момент достигается быстро и поддерживается в широком диапазоне оборотов двигателя, обеспечивается максимальное повышение мощности.

Twin Turbo: описание,виды,преимущества и недостатки.

Twin Turbo — это коммерческое обозначение продвинутой системы турбонаддува двигателей внутреннего сгорания.

Используют так же наименование Biturbo, однако можно встретить и некорректное обозначение этим термином параллельной системы с двумя турбинами. Под этим термином понимают многозвенную систему нагнетания воздуха в цилиндры при помощи двух и более компрессоров с приводом от выхлопных газов, дающую прирост КПД, мощности и снижающую токсичность выбросов.

Twin Turbo проектировалась для разрешения ключевой проблемы наддувных двигателей — ликвидации турбоямы, проявляющейся как снижение эластичности и резкое падение мощности на низких оборотах двигателя, пока турбина еще не успела раскрутиться под давлением выхлопных газов до оптимальных оборотов. Связано это с тем, что крыльчатка нагнетателя изготавливается из особых жаропрочных материалов с немалым запасом прочности и потому имеет ощутимый вес и момент инерции.

Даже высокотехнологичные легкие керамические роторы раскручиваются до 200 тысяч оборотов в минуту за вполне заметное время. Турбояма, или turbo-lag, крайне отрицательно сказывается на динамических характеристиках двигателя, в конечном итоге влияя и на активную безопасность водителя и пассажиров.

Как оказалось впоследствии, сдвоенная турбина позволяет существенно расширить диапазон оборотов номинального крутящего момента, повысить максимальную мощность и сократить удельный расход топлива.

Как и любая другая система из более, чем одного элемента, Twin Turbo может быть параллельной, последовательной или ступенчатой. Каждая из этих схем отличается от другой геометрией, динамическими характеристиками и принципом работы. Управление наддувом берет на себя микроконтроллерный блок, получающий информацию от датчиков и управляющий клапанами и приводами на впускном и выпускном коллекторе.

Параллельный Twin Turbo

Система параллельного Twin Turbo включает два одинаковых турбокомпрессора, работающих одновременно и параллельно друг другу. Параллельная работа реализуется путем равномерного разделения потока отработавших газов между турбокомпрессорами. Сжатый воздух от каждого компрессора поступает в общий впускной коллектор и далее распределяется по цилиндрам.

Параллельный Twin Turbo применяется в основном на V-образных дизельных двигателях. Каждый турбокомпрессор закреплен на своем выпускном коллекторе. Эффективность параллельной схемы турбонаддува базируется на том, что две небольшие турбины имеют меньшую инерционность, чем одна большая. За счет этого сокращается «турбояма», турбокомпрессоры работают на всех оборотах двигателя, обеспечивая быстрое повышение давления наддува.

Последовательный Twin Turbo

Система последовательного Twin Turbo включает два соизмеримых по характеристикам турбокомпрессора. Первый турбокомпрессор работает постоянно, второй включается в работу при определенных режимах работы двигателя (частота оборотов, нагрузка).

Схема системы Twin Turbo
1.перепускной клапан наддува (bypass);
2.клапан управления подачей воздуха;
3.датчик разности давлений;
4.клапан управления подачей отработавших газов;
5.вторичный турбокомпрессор;
6.интеркулер;
7.первичный турбокомпрессор;
8.перепускной клапан отработавших газов (wastegate)

Переход между режимами обеспечивает электронная система управления, которая регулирует поток отработавших газов ко второму турокомпрессору с помощью специального клапана. При полном открытии клапана управления подачей отработавших газов оба турбокомпрессора работают параллельно, поэтому правильно систему называть последовательно-параллельная. Сжатый воздух от двух турбокомпрессоров подается в общий впускной коллектор и распределяется по цилиндрам.

Система последовательного Twin Turbo минимизирует последствия турбозадержки и позволяет достичь максимальной выходной мощности. Применяется на бензиновых и дизельных двигателях. В 2011 году компания BMW представила систему с тремя последовательными турбокомпрессорами – Triple Turbo.

Ступенчатая работа турбин

Рассматривая ступенчатую систему твин турбо важно отметить, что именно она является самой технически грамотной и совершенной, обуславливает самый большой подъем КПД. В такой системе присутствует электронное управление как сгоревшими газами, так и выходящим потоком сжатого воздуха. Здесь, в отличие от предыдущих вариантов, есть возможность применять два разных по размеру турбонаддува. Когда обороты двигателя низкие перепускной клапан сгоревших газов закрыт. Газы следуют по системе твин турбо сначала посещая малый компрессор, где получают максимальную отдачу на давление при минимальной инерции. Далее, они попадают в большую турбину. Когда обороты увеличиваются начинается совместная работа турбин. Перепускной клапан постепенно открывается, то начинает постепенно раскручивать вторую турбину, пуская газы прямо через нее. Когда обороты растут до максимальных, то клапан открывается полностью, и большая турбина начинает работать на полную свою мощность и воздух поступает из нее в двигатель.

Преимущества и недостатки двойного турбонаддува

В настоящее время TwinTurbo в основном устанавливается на мощных автомобилях. Применение этой системы позволяет добиться такого преимущества как обеспечение максимального крутящего момента в широком диапазоне оборотов двигателя. Также благодаря двойному турбонаддуву достигается увеличение мощности при относительно небольших габаритах двигателя, что делает его более экономичным по сравнению с атмосферным двигателем.

К основным недостаткам БиТурбо можно отнести высокую стоимость, что обусловлено сложностью конструкции. Так же, как и с классической турбиной, системы с двумя турбокомпрессорами нуждаются в более бережном отношении, качественном топливе и своевременной замене масла.

Чем отличается Twin-Turbo от Bi-Turbo?

Обе установки разработаны для повышения эффективности и производительности двигателя автомобиля при наличии нагрузки. Кроме того,они обе состоят из двух турбин, которые устанавливаются непосредственно в подкапотном пространстве автомобиля.

Система Bi-Turbo считается лучше, чем ее аналог Twin-Turbo. В ее конструкцию входят две турбины, которые имеют разные параметры размера и мощности. Они предоставляют автомобилю преимущество в равномерном наборе скорости, без потери мощности и появления «провалов». Основная гиперфункция Bi-Turbo в ее плавной работе и отличном старте без рывков и задержек. Систему можно использовать на автомобилях предназначенных для езды по городу.

Установка Twin-Turbo представляет собой систему из двух турбин одинакового размера и мощности. Явное преимущество в том,что синхронная работа турбин обеспечивает взятие максимального потенциала и силы с мотора автомобиля.Отрицательным качеством,принято считать наличие турбоямы-так называемого провала, который возникает по причине провалов и задержек со стороны педали акселератора. Выражаются подобные нюансы в режиме скоростной езды. Водитель ощущает резкий толчок при старте, и при переключении передач.

Читать еще:  Стук клапанов на горячем двигателе

Twin Turbo – Twin-turbo

Твин-турбо или битурбо относится к турбинному двигателю , в котором два турбокомпрессора сжатия всасываемого заряда. Наиболее распространенный макет включает в себя два идентичных турбокомпрессоров параллельно; другие макеты твин-турбо включают последовательные и поставили турбонаддув, последние из которых используются в дизельных автогонки приложений.

содержание

Параллельно твин-турбо

Параллельное твин-турбо относится к конфигурации турбокомпрессора , в котором два идентичных турбокомпрессоров функционировать одновременно, разделяя наддувочного обязанности в равной степени. Каждый турбокомпрессор приводится половиной отработанной энергии выхлопных газов двигателя. В большинстве применений, сжатый воздух с обеих турбин объединяют в общем впускном коллекторе и отправлен в отдельных цилиндры . Обычно каждый турбокомпрессор устанавливается на собственный выпускной / турбо коллектор, но рядные типа двигателей оба турбокомпрессора может быть установлен на одном турбо коллектор. Параллельная двойная турбина , применяемая к V-образным двигателям, как правило , установлены с одним турбо , присвоенными каждым банком цилиндра, что обеспечивает симметрию упаковки и упрощение сантехники по одной установке турбо. При использовании на встроенных двигателях, параллельная спаренная турбина обычно применяется с двумя меньшими турбинами, которые могут обеспечить одинаковую производительность с меньшим турбо лаг , чем один большими турбо. Некоторые примеры параллельных рядных двигателей твин-турбо являются Nissan «s RB26DETT , БМВ N54 и Volvo » s B6284T и B6294T .

Maserati Biturbo , введенный в 1981 году и с участием алюминиевого 90-градусный SOHC V6, был первый серийный автомобиль с твин-турбо двигатель. Другие примеры формирования У двигателей с параллельными-близнецами турбинами включают Мицубиси 6A12TT , 6A13TT и 6G72TT ; Nissan в VG30DETT и VR38DETT ; и Audi «s 1997-2002 S4 (B5) , 1997-2005 A6 и 2003-2017 RS6 .

В то время как параллельный твин-турбо установка теоретически имеет меньше турбо лаг , чем один турбокомпрессор настроить, это не всегда так из – за многих факторов. Незначительно снижено в сочетании инерционного сопротивления, упрощенный выхлопной водопровод, и одновременные наматывая обоих турбины означает , что все еще может быть заметно немного задержки, особенно в высоких потоках приложениях турбо / высокого импульса. Некоторые способы борьбы с этим должны использовать давление света установить с меньшими турбинами, где Турбина предназначена для вывода меньше наддува , но золотником ранее. В то время как эта установка приносит в жертву какой – то верхний конец власти, он все еще имеет меньшую задержку , чем аналогичный двигатель с одним турбо настроить делает такую же мощность. Другая система будет использование переменной геометрии турбонаддува . Эта система изменяет угол направляющих лопаток в зависимости от давления выхлопных газов, что придает системе отличную мощность во всем диапазоне оборотов. После того, как используется в основном для турбированных дизельных двигателей , Chrysler был первым , чтобы использовать его в массовом производстве бензиновых транспортных средств с Shelby CSX , дебютировавшей в 1989 году.

Можно использовать параллельную работу с более чем двумя турбонагнетателями. Два таких примеров являются Bugatti EB110 и Bugatti Veyron , оба из которых запуск четырех турбокомпрессоров параллельно. EB110 работает 4 турбины на 3,5 – литровый двигатель V12, производя 542 л.с. (404 кВт) при 8000 оборотах в минуту, в то время как Вейрон использует 8,0 – литровый 16 – цилиндровый двигатель для генерации 1,001 PS (736 кВт ; 987 л.с. ). Bugatti Veyron Super Sport использует Quad-турбо 8.0 W16 двигатель , который производит 1216 PS (894 кВт ; 1200 л.с. ).

Последовательная турбонаддув

Последовательные Турбосы относятся к настройкам, в котором двигатель использует один турбонагнетатель для более низких оборотов двигателя, а второй или оба турбокомпрессоров на более высоких оборотах двигателя. Как правило, большие турбокомпрессоры высокого потока не столь эффективны при низких оборотах, что приводит к снижению давления впускного коллектора в этих условиях. С другой стороны, небольшая Турбина намотать быстро на низких оборотах, но не может обеспечить достаточное количество воздуха при более высоких оборотах двигателя. При низких и средних оборотах двигателя, если имеется потрачено энергии выхлопных газов является минимальным, только один относительно небольшим турбокомпрессора (так называемый первичный турбокомпрессор) активен. В течение этого периода все энергии выхлопных газов двигателя направлен только на основной турбокомпрессор, обеспечивая преимущества маленького турбо более низкого порога наддува, минимальной турбо лаг, и увеличение выходной мощности при низких оборотах двигателя. По мере увеличения RPM, вторичный турбонагнетатель частично активируются для того, чтобы пра-катушки до его полного использования. После того, как заданное число оборотов двигателя или давление наддува достигается, клапаны, контролирующие компрессора и турбины поток через вторичный турбокомпрессора открыты полностью. (Первичный турбокомпрессор отключена в данный момент в некоторых приложениях.) Таким образом, полная настройка твин-турбонагнетатель обеспечивает преимущества, связанные с большим турбо, в том числе максимальной выходной мощности, без недостатка повышенной турбо лаг.

Последовательные системы турбокомпрессора обеспечивают способ уменьшить турбо лаг без ущерба для окончательного вывода наддува и мощности двигателя. Пожалуй, наиболее примечательно применением этой системы является четвертым поколением Toyota Supra (1993-1998), который , как правило , рассматриваются как имеющие самым надежная последовательная система турбо пока установленная на автомобильное производство, с сообщенной интенсивностью отказов менее 1% по состоянию на 2011 г. Другие примеры автомобилей с последовательной установкой твин-турбо включают 1986-1988 Porsche 959 , 1990-1995 Eunos Cosmo JC, 1992-2002 Mazda RX-7 FD3S Turbo ( 13B-REW двигателя), то 1994- 2005 JDM Subaru Legacy GT, GT-B & B4 RSK ( EJ20TT двигателя), а также Peugeot 407 2.2 HDi. ГМ подал заявку на патент для последовательной системы твин-турбо , который использует новую конструкцию клапана байпаса сказал , чтобы оптимизировать поток выхлопных газов для турбин обоих турбокомпрессоров. В соответствии с патентным описанием 2016 года, выпускной коллектор имеет две розетки с одним направляющих выхлопных газов на турбину турбокомпрессора высокого давления, в то время как второе выпускное отверстие выпускной коллектор направляет выхлопные газы в турбину турбокомпрессора низкого давления через соединительный канал , Кроме того, отработавший газ , выходящий из турбины высокого давления направляется на вход в турбине низкого давления. Новая система перепуска включает в себя два дроссельных клапанов , расположенных на одной и той же шпиндель , установленный перпендикулярно друг к другу. С дроссельные клапаны установлены на одной и той же плоскости, один клапан открывается для направления потока выхлопных газов к одному из турбокомпрессоров в то время как другие клапаны одновременно блокирует выхлопного потока газа к другому турбокомпрессора. ЭБ транспортного средства (электронный блок управления) посылает сигнал на привод шпинделя для поворота дроссельной заслонки на основании оборотов и нагрузке. GM говорит , что новая конструкция позволяет инженерам оптимизировать поток выхлопных газов для обоего турбин без компромиссов традиционных систем последовательного турбонаддува. Кроме того, система может использовать изменяемой геометрией турбины или с фиксированной геометрией турбины на турбо высокого давления.

Поэтапное турбонаддув

Последовательные турбо также может быть полезным для системы , в которой выходное давление должно быть больше , чем может быть обеспечено с помощью одного турбо, обычно называют поставил звукопровод системы. В этом случае, несколько же размеров турбокомпрессоров используются в последовательности, но оба работают постоянно. Первый турбо повышает давление как можно больше (например , в три раза давление на входе). Последующий Турбос взять заряд от предыдущего этапа и сжать его дальше (например , к дополнительному три раза впускному давлению, на общее подталкивание девяти раз атмосферного давления). Эта конфигурация обычно находится на поршневых авиационных двигателей , которые обычно не нужно быстро поднимать и опускать обороты двигателя (и , таким образом , где турбо задержка не является первичным фактором конструкции), и где давление на входе является довольно низким из – за низкого атмосферного давления на высоте , требуя соотношение очень высокого давления. Дизельные двигатели Высокопроизводительных также иногда используют эту конфигурацию, так как дизельные двигатели не страдают от проблем предварительного зажигания и могут использовать значительно более высокое давление наддува , чем с циклом Отто двигателей.

Преимущества в дизельных выбросов

В то время как искровым зажиганием двигателей опале последовательной конструкции турбо, многие дизельные компании теперь делают двигатели с последовательным турбинами с целью снижения выбросов.

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Читать еще:  Обновленный киа соренто прайм 2018

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Twin-Turbo и Bi-Turbo — в чем разница?

Автомобиль-механизм, который значительно облегчает жизнь человеку, экономит время и дает определенный комфорт. Современные авто могут быть абсолютно разного назначения и модификации. Для любителей спорткаров и им подобных силовых установок, производители выпускают агрегаты с мощными моторами. К таки относят двигатели с типом турбонадува Twin-Turbo и Bi-Turbo.

Две турбины на двигатель – как и зачем?

Сейчас может возникнуть вопрос, а вообще зачем? Все просто есть всего два вопроса, которые они призваны решать:

  • Устранение турбоямы, можно сказать, что это первоочередная проблема.
  • Увеличение мощности.
  • Строение двигателя.

Начну, пожалуй, с самого простого пункта – это строение двигателя. Конечно, легко ставить одну турбину, когда у вас есть рядный двигатель на 4 или 6 цилиндров. Глушитель то один. Но вот что делать, когда у вас скажем V образный мотор? И по три – четыре цилиндра на каждую строну, тогда и глушителя два! Вот и ставят на каждый по турбине, средней или малой мощности.

Устранение турбоямы – как я уже писал сверху, это задача номер «1». Все дело в том что у турбированного мотора, есть провал — когда вы нажимаете на газ, отработанным газам нужно пройти и раскрутить крыльчатку турбины, именно это время и «проседает» мощность, это может быть от 2 до 3 секунд! А если вам на скорости нужно сделать обгонный маневр – это не безопасно! Вот и устанавливают различные турбины, а зачастую компрессор + турбина. Один работает на низких оборотах, то есть на старте, чтобы избежать «турбоямы», вторая – на скорости когда нужно оставить тягу.

Увеличение мощности – это самый банальный случай. То есть для увеличения мощности мотора, к маломощной турбине устанавливают еще одну мощную, таким образом — дуют они две, что значительно повышает производительность. Кстати на некоторых гоночных машинах, есть и три и даже четыре турбины, но это очень сложно и в серию, как правило не идет!

Вот собственно и решения, для которых применяют «ТВИНТУРБО» или «БИТУРБО» и знаете это реально выход, от избавления от турбоямы и увеличения мощности.

Читать еще:  Тойота камри 2018 когда начнутся продажи в россии

Что такое система Twin-Turbo?

Работа турбины осуществляется определенным образом. Воздух снаружи автомобиля нагнетается и закачивается в цилиндры двигателя. Но, после того как рост оборотов двигателя увеличивается, работа турбины утрачивает свою эффективность. Для устранения подобной особенности функционирования турбины, разработчики спроектировали систему состоящую из двух турбин.

Работа турбин может осуществляться в режиме индивидуально подобранном владельцем автомобиля. Они могут работать как параллельно, так и последовательно. Во втором случае одна турбина подключается в момент запуска двигателя и набора оборотов, а вторая-подключается в момент падения эффективной работы первой. Обоюдная работа, в свою очередь, обеспечивает огромный прирост в производительности и работе двигателя.

Система Twin-Turbo может работать и устанавливаться на двигателях V-образного типа, также подойдут и рядные моторы, особого отличия в этом факте нет. Основной целью работы подобной установки-увеличение производительности автомобиля и быстрый набор скорости.

Система обладает определенным перечнем недостатков:

  1. Длительная ответная реакция на педаль акселератора.
  2. Усиленная эксплуатация второй,более мощной турбины и ее преждевременный износ.
  3. Присутствие турбоямы, состояния в котором, турбины не имеют эффективности.

На модели автомобилей,которые участвуют в гонках или драг-рейсинге нередко устанавливается и 3-5 турбин согласно вышеуказанной схеме. На серийные автомобили таких»излишеств» автомобильная промышленность не предусматривает.

Про строение

Сейчас на многих авто применяются всего два основных строения — расположения двух турбин. Это параллельное и последовательное (известное еще как секвентальное).

Например, некоторые Мицубиши имеют именно «ТВИНТУРБО», но параллельную работу, как я уже отмечал сверху, это две турбины на агрегате V6, по одной на каждую сторону. Дуют они в общий коллектор. А вот например на некоторых АУДИ, также есть параллельная работа на двигателе V6, но название «БИТУРБО».

На автомобилях Тойота в частности на «СУПРА», стоит рядная шестерка, однако тут также есть два наддува – работают они в хитром порядке, могут работать сразу два, могут один работает, другой нет, могут включаться попеременно. Все зависит от вашей манеры езды – добиваются такой работы «хитрыми» перепускными клапанами. Вот вам последовательно-параллельная работа.

Как и на некоторых автомобилях СУБАРУ – первая (малая) нагнетает воздух на низких оборотах, вторая (большая) подключается только тогда, когда обороты значительно выросли, вот вам и параллельное включение.

Так разница все же есть или отличий вообще нет? Знаете негласно, производители все же отличают эти два строения, давайте подробнее.

Двигатели с системой Bi-Turbo

Bi-Turbo также подразумевает наличие двух турбин, однако если в предыдущем варианте турбины были одинаковыми, то Би-турбо включает в себя наличие обычной турбины и увеличенной, более мощной. Турбины обладают последовательным способом включения, то есть на малых и средних оборотах работает первая турбина, на больших оборотах – увеличенная. Благодаря такой конфигурации обеспечивается ровный разгон автомобиля.

В свою очередь, устанавливаться Bi-Turbo также может и на V-образные двигатели, и на рядные.

БИ-ТУРБО (BI-TURBO)

Как правило, это два последовательно включаемых турбины в работу. На ярком примере СУБАРУ – одна малая и затем другая большая.

Малая раскручивается намного быстрее, потому как не обладает большой инерционной энергией – логично она включается в работу на низах, то есть первой. Для малых скоростей и до невысоких оборотов этого вполне достаточно. Но при больших скоростях и оборотах этот «малыш» практически бесполезен, тут нужна подача, куда большего объема сжатого воздуха – включается вторая более тяжелая и мощная турбина. Которая дает нужную мощность и производительность. Что дает такое последовательное размещение в BI-TURBO? Это почти исключение турбоямы (комфортное ускорение) и высокая производительность на высоких скоростях, когда тяга остается даже на скоростях за 200 км/ч.

Нужно отметить, что могут быть установлены как на V6 агрегат (с каждой стороны по своей турбине), так и на рядную версию (здесь могут разделить выпускной коллектор, например с двух цилиндров дует одна, с других двух другая).

Минусами можно назвать высокую стоимость и работы по настройки такой системы. Ведь здесь применяются тонкие настройки перепускных клапанов. Поэтому установка обусловлена на дорогих спортивных машинах, таких как ТОЙОТА СУПРА, либо на авто элитного класса – МАЗЕРАТТИ, АСТОН МАРТИН и т.д.

ТВИН-ТУРБО (TWIN-TURBO)

Здесь в основном стоит задача не избавиться от «турбоямы», а максимально повысить производительность (нагнетание сжатого воздуха). Как правило работает такая система на высоких оборотах, когда один нагнетатель не может справиться с возросшей на него нагрузкой, поэтому устанавливается (параллельно) еще один такой же. Вместе они нагнетают воздуха в два раза больше, что даете почти такой же прирост производительности!

Но как же «турбояма», что она здесь свирепствует? А вот и нет, ее тоже эффективно побеждают только немного другим способом. Как я уже говорил, малые турбины гораздо быстрее раскручиваются, так вот представьте – меняют 1 большую, на 2 малых – производительность практически не падает (работают параллельно), а вот «ЯМА» уходит потому как реакция быстрее. Поэтому, получается, создать нормальную тягу, с самого низа.

Установка может быть как на рядные модели силовых агрегатов, так и на V-образные.

Производство и настройка намного дешевле, поэтому это строение применяется у многих производителей.

Турбина + компрессор

Это тоже можно назвать «БИ-ТУРБО» или «ТВИН-ТУРБО» — как хотите. По сути, и компрессор и турбо вариант, делают одну работу, только один (механический) намного эффективнее в низах, другой (от отработанных газов) — в верхах! Про различия наддувов читаем здесь.

Как правило, компрессор устанавливается на ременную передачу от коленчатого вала двигателя, поэтому максимально быстро раскручивается с ним. Тем самым позволяя избегать «ЯМЫ», а вот на высоких оборотах он бесполезен – тут уже вступает турбо вариант.

Этот симбиоз применяется на некоторых немецких машинах, большой плюс компрессора, что у него намного выше ресурс, чем у оппонента!

Сейчас небольшое видео, смотрим

Читайте наш АВТОБЛОГ, подписывайтесь на обновления.

(8 голосов, средний: 4,88 из 5)

BITURBO и TWINTURBO: есть ли разница?

В наше время современными производителями нередко используется турбонаддув, при котором увеличивается объём топлива, поступающего в цилиндр. Тем самым увеличивается мощность мотора. Машины с двумя турбинами чаще всего называют Twinturbo, Biturbo или Double Turbo. Однако в среде автомобилистов не прекращаются споры о серьёзных отличиях Битурбо и Твинтурбо. Сегодня мы постараемся выяснить истину: действительно ли стоит говорить о различиях данных систем, или нет.

Суть вопроса

Если взять Битурбо и Твинтурбо, то мы не увидим никаких важных различий. Обе системы наддува имеют два компрессора. Обе имеют различные вариации технических частей. Даже касаемо названий приставка – twin, так же как и – bi означает наличие двойных элементов, или пары. В нашем случае – двух турбин.

Несколько вариантов названий придумали маркетологи, чтобы выделить свою продукцию из общей массы машин, имеющих аналогичную компоновку. Как правило, Японские производители предпочитают писать на своих авто Твинтурбо, а европейские – Битурбо. Так как в Россию поступают автомобили со всего света, именно на этой почве и возникли споры о различии этих двух систем. Поэтому, спорить о различиях не имеет смысла. Зато вам наверняка будет любопытно узнать про абсолютно разные варианты этих систем, которые используются в мире.

Классический подход

Если вам известно что представляет собой турбонаддув, тогда вы знаете о сложностях установки двойного турбокомпрессора. Обычно на одну выхлопную магистраль ставятся обе турбины Biturbo на некотором расстоянии друг от друга. Получается следующее: турбокомпрессор, который установлен дальше, получает меньшее количество энергии, и соответственно, менее активно работает. Раньше такая проблема решалась просто: на второй турбине системы Twinturbo ставили разные подшипники, и меняли форму крыльчатки. Это позволяло сбалансировать работу всей системы, и повышало мощность мотора с помощью системы Biturbo.

Спустя некоторое время выявились присущие данному методу недостатки, а именно:

  • Наличие турбоямы. То есть определённого диапазона в оборотах, когда турбины перестают работать
  • Долгий отклик на подачу газа
  • Быстрое изнашивание ближней турбины
  • Сложности с установкой на V – образных моторах

Возникшую задачу пробовали решить разными способами, но наилучший вариант оказался возможен благодаря компании Toyota, установившая турбокомпрессоры Biturbo в своём варианте. При низких оборотах двигателя и закрытых клапанах весь выхлоп идёт в первую турбину, тем самым она раскручивается, что обеспечивает лёгкость выхода из турбоямы. Когда достигается планка в 3500 об/мин, при избыточном давлении газов в системе, срабатывает датчик, и открывается специальная заслонка. При этом происходит устремление горячего потока ко второму компрессору, который больше по размеру. Следовательно, мощность двигателя увеличивается в несколько раз.

Современные варианты

При сильном распространении V – образных двигателей, значительно уменьшилось использование системы Biturbo из-за неудобства технического процесса. Годах в 80-ых был разработан альтернативный вариант Twinturbo, при котором за каждой турбиной закреплялись несколько цилиндров разных половин блока. Данный метод позволял располагать турбины близко к впускному и выпускному коллекторам, что в свою очередь помогало увеличить мощность силового агрегата, и частично избавиться от эффекта турбоямы.

Самый интересный вариант Twinturbo был осуществлён компанией BMW, которая предложила расположить турбины в развале V8, вместо расположения с разных сторон цилиндров. В свою очередь, оба турбокомпрессора были запитаны от всех цилиндров двигателя. Эта сложная задача была блестяще реализована инженерами компании BMW, а результат смог превзойти все ожидания. Были решены следующие задачи:

  • Уменьшилась вибрация двигателя
  • Увеличилась его мощность и стабильная работа
  • Снизился эффект турбоямы практически в половину

В заключение

На основе вышеизложенного мы делаем вывод об отсутствии разницы между Twinturbo и Biturbo. Так же, впрочем, как и Double Turbo. Если вы действительно хотите узнать различия в системах турбонаддува, то можно направить внимание на параллельную и последовательную компоновку. А так же на разницу между механическим наддувом и турбокомпрессором, и возможностью их совместного применения.

Ссылка на основную публикацию
Adblock
detector