Угол поворота 2 датчика холла
Autoservice-ryazan.ru

Автомобильный портал

Угол поворота 2 датчика холла

УАЗ 3303 Барсик › Бортжурнал › Зажигание на двух датчиках Холла: что это, зачем нужно и как поставить на УАЗ?

Всем привет! Дабы не разбивать тему на несколько записей попробую собрать всё в одном месте.
Как ясно из темы, сегодня поговорим о, так называемом, “подводном” зажигании.

1 Зачем это нужно?
Увеличивается мощность искры и исключается бегунок-распределитель из трамблера.

2 Как это работает?
Система с датчиком Холла устроена так: В самом датчике есть прорезь, и вот когда через эту прорезь проходит какая-нибудь железка датчик выдаёт сигнал, но сигнал слабый, и для искры его не хватит, поэтому он поступает на коммутатор, там усиливается и с коммутатора попадает на катушку. Последняя выдаёт искру:

3 Как всё соединяется?
Соединяется, всё так:

4 Как будем собирать мы?
Мы будем собирать так называемую двухканальную схему. То есть, в трамблер поставим два датчика Холла, соответственно два коммутатора и две двухискровые катушки. Делать так будем для того, чтобы избавиться от бегунка распределителя в трамблере.

5 Что купить?
Всё довольно просто, в трамблер вместо контактов или индуктивного датчика устанавливаются на самодельной площадке под углом 90 градусов друг к другу два датчика Холла. Датчики устроены так, что при проведении через прорезь в них железной полоски (даже отвертки) они формируют импульс, который усиливается коммутатором и поступает на катушку (искра на свечах образуется в момент выхода шторки из датчика!). Каждый датчик у нас будет работать на два цилиндра (1-4 и 2-3 соответственно).
У нас четыре цилиндра, следовательно, нужно два датчика Холла, два коммутатора, две катушки и комплект проводки, чтобы всё соединить. Всё остальное делается руками.
Датчик Холла. В магазине просим от ВАЗ 2108-2109:

6 Как установить?
А) Доработка трамблера.
Датчики Холла нужно установить в трамблер. А на вращающемся роторе закрепить железную шторку с прорезями.
Изготавливаем площадку под крепление датчиков, строго под углом 90 градусов. Датчики старайтесь максимально отодвинуть от центра, для большей чёткости работы, учитывая их движение относительно корпуса (вакуумное опережение).
Шторку делаем из листа железа и закрепляем её на роторе. Железку ищем не сильно тонкую (чтобы не погнуло) и не сильно толстую (не пройдёт в прорезь датчика). Обязательно, чтобы магнитилась.

7. Подключаем всё по этой схеме:

8. Цены (на момент марта 2019г.):
1) два датчика Холла: 2х150руб. = 300руб.
2) две катушки двухискровые: 2х650руб. = 1300руб.
3) два коммутатора ВАЗ (6 контактные): 2х400руб = 800руб.
4) 1 комплект проводки на зажигание от ваз 2108: 250руб.
5) трамблер у меня был, поэтому: 0руб.
Итого: 2650руб.

9 Какие варианты?
Вариант №1. Можно просто поставить один датчик Холла, один коммутатор, оставить бегунок распределитель в трамблере и стандартную катушку. Но тогда в бабочке делаем четыре отверстия (будет 4 лепестка)

Датчики Холла: принцип работы, типы, применение, как проверить

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.
Читать еще:  Рендж ровер вог новый

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Устройство и принцип работы датчика Холла, схема подключения и применение

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер положения клапанов

Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).

Так можно фиксировать открывание и закрывание клапанов.

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0). Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает. По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Читать еще:  Ошибка 0171 бедная смесь причины

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

Классическое устройство датчика Холла на практике – тонкий полупроводниковый листовой материал. При прохождении через него постоянного тока на краях листа образуется сравнительно невысокое напряжение. Если под прямым углом поперек пластинки проходит магнитное поле, то на краях листа происходит усиление напряжения, которое находится в прямо пропорциональной зависимости с магнитной индукцией. Датчик Холла является одной из разновидностей датчиков импульсов, создающих электрические импульсы с низким напряжением. Благодаря своим качествам, этот элемент широко применяется в бесконтактных системах зажигания .

А может вы подскажите, как следует его использовать? Я имею ввиду, как стоит правильно подключить?
Могут ли недостатки повлиять на саму работу?

Просто удивительно, что с помощью Датчика Холла можно столько всего испробовать и даже создать его самому. Очень нужная вещь как в квартиру, так и в машину, да и в телефон не помешает. Спасибо за интересную и увлекательную статью. Успехов!

Датчики Холла для бесколлекторного двигателя: возвращение квадратурных энкодеров

Это уже третья статья, рассказывающая о квадратурных декодерах, на сей раз с применением к управлению бесколлекторными двигателями.

  • Статья первая: принцип работы квадратурного декодера + код для ардуино.
  • Статья вторая: квадратурный декодер на stm32.

Задача: есть обычный китайский бесколлекторник, нужно его подключить к контроллеру Copley Controls 503. В отличие от копеечных коптерных контроллеров, 503й хочет сигнал с датчиков холла, которых на движке нет. Давайте разбираться, для чего нужны датчики и как их ставить.

Ликбез: принцип работы бесколлекторного двигателя

В качестве иллюстрации я возьму очень распространённый двигатель с двенадцатью катушками в статоре и четырнадцатью магнитами в роторе. Вариантов намотки и количества катушек/магнитов довольно много, но суть всегда остаётся одной и той же. Вот фотография моего экземпляра с двух сторон, отлично видны и катушки, и магниты в роторе:

Чтобы было ещё понятнее, я нарисовал его схему, полюса магнитов ротора обозначены цветом, красный для северного и синий для южного:

На датчики холла пока не обращайте внимания, их всё равно нет 🙂

Что будет, если подать плюс на вывод V, а минус на вывод W (вывод U не подключаем ни к чему)? Очевидно, будет течь ток в катушках, намотанных зелёным проводом. Катушки намотаны в разном направлении, поэтому верхние две катушки будут притягиваться к магнитам 1 и 2, а нижние две к магнитам 8 и 9. Остальные катушки и магниты в такой конфигурации роли практически не играют, поэтому я выделил именно магниты 1,2,8 и 9. При такой запитке мотора он очевидно крутиться не будет, и будет иметь семь устойчивых положений ротора, равномерно распределённых по всей окружности (левая верхняя зелёная катушка статора может притягивать магниты 1, 3, 5, 7, 9, 11, 13).

Давайте записывать наши действия вот в такую табличку:

Угол поворота ротора U V W
n.c. +

А что будет, если теперь подать плюс на U и минус на W? Красные катушки притянут к себе магниты 3,4,10 и 11, таким образом чуть-чуть повернув ротор (я по-прежнему выделяю магниты, за которые ротор тянет):

Давайте посчитаем, на сколько повернётся ротор: между щелями магнитов 1-2 и 3-4 у нас 51.43° (=360°*2/7), а между соответствующими щелями в статоре 60° (=360°/12*2). Таким образом, ротор провернётся на 8.57°. Обновим нашу табличку:

Угол поворота ротора U V W
8.57° + n.c.

Теперь сам бог велел подать + на U и — на V!

Угол поворота ротора U V W
17.14° + n.c.

Теперь опять пора выровнять магниты с зелёными катушками, поэтому подаём напряжение на них, но красный и синий магниты поменялись местами, поэтому теперь нужно подать обратное напряжение:

Угол поворота ротора U V W
25.71° n.c. +

C оставшимися двумя конфигурациями всё ровно так же:

Угол поворота ротора U V W
34.29° n.c. +

Угол поворота ротора U V W
42.85° + n.c.

Если мы снова повторим самый первый шаг, то наш ротор провернётся ровно на одну седьмую оборота. Итак, всего у нашего мотора три вывода, мы можем подать напряжение на два из них шестью разными способами 6 = 2*C 2 3, причём мы их все уже перебрали. Если подавать напряжение не хаотично, а в строгом порядке, который зависит от положения ротора, то двигатель будет вращаться.

Запишем ещё раз всю последовательность для нашего двигателя:

Угол поворота ротора U V W
n.c. +
8.57° + n.c.
17.14° + n.c.
25.71° n.c. +
34.29° n.c. +
42.86° + n.c.

Есть один нюанс: у обычного коллекторного двигателя за переключение обмоток отвечают щётки, а тут нам надо определять положение ротора самим.

Датчики Холла

Теперь давайте поставим три датчика холла в те чёрные точки, обозначенные на схеме. Давайте договоримся, что датчик выдаёт логическую единицу, когда он находится напротив красного магнита. Всего существует шесть (сюрприз!) возможных состояний трёх датчиков: 2 3 — 2. Всего возможных состояний 8, но в силу расстояния между датчиками они не могут все втроём быть в логическом нуле или в логической единице:

Обратите внимание, что они генерируют три сигнала, сдвинутые друг относительно друга на 1/3 периода. Кстати, электрики используют слово градусы, говоря про 120°, чем окончательно запутывают нубов типа меня. Если мы хотим сделать свой контроллер двигателя, то достаточно читать сигнал с датчиков, и соответственно переключать напряжение на обмотках.

Для размещения датчиков я использовал вот такую платку, дизайн которой взял тут. По ссылке лежит проект eagle, так что я просто заказал у китайцев сразу много подобных платок:

Эти платки несут на себе только три датчика холла, больше ничего. Ну, по вкусу можно поставить конденсаторы, я не стал заморачиваться. Очень удобно сделаны длинные прорези для регулировки положения датчиков относительно статора.

Постойте, но ведь это очень похоже на квадратурный сигнал с обычного инкрементального энкодера!

Ещё бы! Единственная разница, что инкрементальные энкодеры дают два сигнала, сдвинутые друг относительно друга на 90°, а у нас три сигнала, сдвинутые на 120°. Что будет, если завести любые два из них на обычный квадратурный декодер, например, той же самой синей таблетки? Мы получим возможность определять положение вала с точностью до четырёх отсчётов на одну седьмую оборота, или 28 отсчётов на оборот. Если вы не поняли, о чём я, прочтите принцип работы квадратурного декодера в первой статье.

Я долго думал, как же мне использовать все три сигнала, ведь у нас происходит шесть событий на одну седьмую оборота, мы должны иметь возможность получить 42 отсчёта на оборот. В итоге решил пойти грубой силой, так как синяя таблетка имеет кучу аппаратных квадратурных декодеров, поэтому я решил в ней завести три счётчика:

Видно, что при каждом событии у нас увеличиваются два из них, поэтому сложив три счётчика, и поделив на два, мы получим равномерно тикающий определитель положения вала, с точностью до 6*7 = 42 отсчёта на оборот!

Вот так выглядит макет подключения датчиков Холла к синей таблетке:

А почему на двигателе сразу нет датчиков?

В некоторых приложениях (например, для коптеров) все эти заморочки не нужны. Контроллеры пытаются угадать происходящее с ротором по току в катушках. С одной стороны, это меньше заморочек, но с другой стороны, иногда приводит к проблемам с моментом старта двигателя, поэтому слабоприменимо, например, в робототехнике, где нужны околонулевые скорости. Давайте попробуем запитать наш движок от обычного китайского коптерного ESC (electronic speed controller).

Мой контроллер хочет на вход PPM сигнал: это импульс с частотой 50Гц, длина импульса задаёт обороты: 1мс — останов, 2мс — максимально возможные обороты (считается как KV двигателя * напряжение).

Вот здесь я выложил исходный код и кубовские файлы для синей таблетки. Таймер 1 генерирует PWM для ESC, таймеры 2,3,4 считают соответствующие квадратурные сигналы. Поскольку в прошлой статье я крайне подробно расписал, где и что кликать, то здесь только даю ссылку на исходный код.

На вход моему ESC я даю пилообразное задание скорости, посмотрим, как он его отработает. Вывод синей таблетки лежит тут, а код, который рисует график, тут.

Поскольку у меня двигатель имеет номинал 400KV, а питание я подал 10В, то максимальные обороты должны быть в районе 4000 об/мин = 419 рад/с. Ну а вот и график подоспел:

Видно, что реальные обороты соответствуют заданию весьма приблизительно, что терпимо для коптеров, но совершенно неприменимо во многих других ситуациях, почему, собственно, я и хочу использовать более совершенные контроллеры, которым нужны сигналы с датчиков холла. Ну и бонусом я получаю угол поворота ротора, что бывает крайне полезно.

Подводим итог

Я провёл детство в обнимку с этой книжкой, но раскурить принципы работы бесколлекторников довелось только сейчас.

Оказывается, что шаговые моторы и вот такое коптерные моторчики — это (концептуально) одно и то же. Разница лишь в количестве фаз: шаговики (обычно, бывают исключения) управляются двумя фазами, сдвинутыми на 90°, а бесколлекторники (опять же, обычно) тремя фазами, сдвинутыми на 120°.

Читать еще:  Приора 2017 универсал

Разумеется, есть и другие, чисто практические отличия: шаговики рассчитаны на увеличение удерживающего момента и повторяемость шагов, в то время как коптерные движки на скорость и плавность вращения, что сказывается на количестве обмоток, подшипниках и т.п. Но в итоге обычный бесколлекторник можно использовать в шаговом режиме, а шаговик в постоянном вращении, управление у них будет одинаковым.

Update: красивая анимация от Arastas:

GAZ 31 105 Renaissance › Logbook › Трамблер с 2 ДХ от 2108 или “ignition system debug” Продолжение (с пошаговым руководством)

Наконец то я все зафоткал, отредактировал через старый добрый “Paint”, и теперь выставляю на всеобщее обозрение, так сказать, руководство по изготовлению “безбегункового” трамблера с двумя датчиками Холла. Далее обо всем попорядку. И сильно не пинайте за качество изображений. Если что то не понятно, задавайте вопросы.

FakeHeader

Recommendations

Comments 22

Я так понимаю для восьми горшков надо сделать “умножение на два”?

Для восьми горшков надо не просто “умножить на два”, но и просчитать алгоритм работы цилиндров, чтобы попарно раскидать высоковольтные провода. Таким образом, понадобится 4 катушки “от 406го” или 2 модуля “от тазика”. При порядке зажигания “15426378”, попарно будут работать 1-6, 5-3, 4-7 и 2-8. При этом искра должна будет одновременно подаваться на оба цилиндра из пары. В трамблер придётся поставить 4 ДХ, при прохождении через каждый из которых, шторка будет подавать импульс на один из 4х коммутаторов, и модули будут подавать искру на соответствующие цилиндры.

Доброго времени суток вопрос шторка-бабочка из какого материала изготавливаеться?

Любой материал, обладающий магнитными свойствами, т.е.сталь, от обычной конструкционной до высоколегированной нержавеющей.

Понравилась данная статья. 🙂
У меня возник вопрос по поводу нижней площадки, где располагаются датчики холла.
Откуда откладывается угол 90 гр, чтобы выполнить разметку под датчики? От края центрального отверстия в площадки или от центра центрального отверстия в площадки?
Заранее спасибо.

Где в Самаре заказывал деталюшки?

Выложи видео готовой конструкции и работающего двигателя после переделки зажигания

Эхх, жаль конечно, но похоже опоздал ты с этой просьбой, поскольку Волжанка моя встала на полную капиталку кузова с перекраской и установкой 406-го движка, так что снял я с нее 402 с данной системой зажигания. Когда появится хоть минутка свободного времени, буду втыкать эту систему на УАЗик, а там авось не запамятую все это дело отснять и выложить на всеобщее обозрение.

А сможешь мне сделать такой трамблер под заказ? Заплачу, как за новый. У меня просто нет времени и места этим заниматься.

Я тоже готов оплатить труды)

Все большое спасибо!

Доброго времени суток!Твоей информаци цены нет! Все подробно-просто огромное спасибо! Но у меня есть несколько маленьких вопросов-как правильно расположить датчики Холла? То что под углом в 90* друг к другу это понятно. Но поскольку на пластине 3 отверстия то ее можно расположить в трех разных положениях относительно корпуса трамблера. А как правильно? Как должны стоят датчики Холла ну хотя-бы по отношению к прорези на корпусе трамблера, где раньнее была клемма для провода. Или все-равно как?Заранее очень благодарю за ответ. Удачи на дорогах.

Приветствую!
На пластине действительно имеются три отверстия, предназначенных для крепления её на опорную платформу, но расположить её в 3-х разных положениях невозможно, поскольку расстояние между отверстиями разное. На рис.4 (вид трамблера сверху) показано правильное расположение пластины и датчиков. В качестве ориентира можно использовать вакуумный корректор УОЗ.

Примечание: Правильность расположения датчиков холла непосредственно влияет на ровность работы двигателя на ХХ, поэтому после установки данной системы зажигания на двигатель возможно потребуется произвести окончательную настройку момента искообразования путем корректировки положения датчиков холла относительно оси вращения шторки. Датчики Холла должны быть расположены строго под углом 90° относительно друг друга, при этом оси продольной симметрии каждого из датчиков должны пересекаться ровно в центре продольной оси вала трамблера.

Производить настройку расположения датчиков при работающем двигателе не рекомендуется, поскольку данная операция черевата травмами конечностей и выводом из строя узлов и деталей системы зажигания.

Успехов в ремонте/доработке/совершенствовании, ровных дорог и ни гвоздя, ни жезла!))

Все. теперь понятно. У меня просто не открывалось 4-е фото-вместо него белое поле.А коммутаторы такие как на фото или как на схеме? Спасибо тебе! Удачи тебе на дорогах!

Коммутаторы любые от 2108-099. Производители могут быть разные, но суть от этого не меняется.

Очень подробно! Супер!

дошло дело до сборки аппарата после капремонта двигателя. сегодня-завтра новая система зажигания будет установлена и испытана.

Как подключить датчик Холла 49E к Arduino

В статье рассматривается подключение датчика Холла 49E к Arduino.

  • Arduino UNO или иная совместимая плата (я буду использовать Arduino Nano);
  • модуль 49E с датчиком Холла;
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.

1 Описание датчика Холла 49E

Датчик Холла – это прибор, который регистрирует изменение напряжённости магнитного поля. В настоящее время датчики на основе эффекта Холла нашли широкое применение. Например:

  • датчики скорости вращения – широко используются в автомобилестроении и везде, где требуется определить скорость вращения колеса или иного вращающегося объекта; сенсоры на основе эффекта Холла пришли на замену механическим герконам;
  • датчики приближения; типичный пример – раскладной чехол на вашем смартфоне, который включает подсветку экрана при открытии;
  • измерение угла поворота;
  • измерение величины вибрации;
  • измерение величины магнитного поля – магнитометры и цифровые компасы;
  • измерение силы тока (переменного и постоянного);
  • измерение воздушных зазоров, уровня жидкости, и многие другие.

Приобрести такой датчик можно здесь.

2 Схема подключения модуля с датчиком Холла к Arduino

Модуль с датчиком Холла содержит следующие компоненты: подстроечный резистор, двухканальный компаратор, несколько согласующих резисторов, пару светодиодов и собственно, сам датчик Холла 49E.

Модуль с датчиком Холла 49E

Подстроечный резистор служит для настройки чувствительности датчика Холла. Первый светодиод сигнализирует о наличии напряжения питания на модуле, второй – о превышении магнитным полем установленного порога срабатывания.

Модуль с датчиком имеет 4 вывода. Назначение выводов приведено в таблице. В третьем столбце таблицы – соответствующий вывод платы Arduino, к которому будет подключаться модуль.

Вывод Назначение Вывод Arduino
G Земля. GND
+ Питание +2,3…10 В. 5V
AO Аналоговый выход – значение напряжённости магнитного поля. A0
DO Цифровой выход – индикатор превышения напряжённости магнитного поля заданного порога. 12

Вот как будет выглядеть модуль с датчиком Холла, подключённый к плате Arduino Nano:

Подключение модуля с датчиком Холла к Arduino Nano

2 Скетч для считывания показаний датчика Холла 49E

Итак, давайте проверим наш датчик в действии. Напишем самый простой скетч, который только и делает, что выводит считанные значения в последовательный порт.

Загрузим скетч и посмотрим, что же выводится в порт:

Вывод в последовательный порт показаний датчика Холла

Очень интересно. Вывод цифрового канала понятен: “0” – магнитное поле ниже заданного подстроечным резистором значения, “1” – выше (я поднёс магнит к датчику). А что же показывает аналоговый канал? Разберёмся с этим чуть позже.

3 Скетч для определения скорости вращения диска

Для того чтобы определить скорость вращения, будем использовать сигнал с цифрового канала сенсора. Такая схема пригодится, например, для создания спидометра для велосипеда.

Для демонстрации соберём вот такую установку: разместим неподвижно датчик Холла (зажмём тисками), а на поверхности вращающегося диска закрепим постоянный магнит. В качестве вращающейся платформы у меня будет старый жёсткий диск, на котором скотчем (простите за неэстетичность) будет зафиксирован магнит.

Установка для определения скорости вращения на основании показаний датчика Холла

Вспомним формулу угловой скорости: ω = φ / t где ω – угловая скорость, φ – угол поворота, t – время, за которое диск повернулся на этот угол. В нашем случае угол (1 оборот) будет равен 360° или 2π радиан. Всё, что нам остаётся – это подсчитать время, за которое происходит один оборот диска.

В скетче мы будем отлавливать переход сигнала с датчика от HIGH к LOW и вычислять разницу между двумя последовательными переходами.

Временная диаграмма цифрового сигнала с датчика Холла для вращающегося диска

Для определения промежутка времени используем встроенную функцию millis(), которая возвращает количество миллисекунд, прошедших с момента включения платы Arduino.

Загрузим скетч, и начнём вращать наш диск с магнитом. Период оборота и угловая скорость выводятся в окно консоли:

Скорость и период вращения диска выводятся в монитор последовательного порта

Кстати, если на небольшом расстоянии друг за другом на диске разместить два магнита, то можно будет определить не только скорость вращения, но и направление. Естественно, скетч придётся немного усложнить.

Возвращаясь к идее спидометра для велосипеда, нужно вспомнить ещё одну формулу – связь угловой и линейной скоростей: v = ω r

Здесь v – линейная скорость, ω – угловая скорость, r – радиус колеса велосипеда. Теперь несложно дописать наш последний скетч с учётом этой формулы.

4 Значения с аналогового каналадатчика Холла 49E

Теперь разберёмся, что же показывают аналоговые значения с датчика Холла.

Датчик выдаёт напряжение, которое изменяется в зависимости от величины магнитного поля. Вектор индукции магнитного поля измеряется в Гауссах (Гс, GS по-английски). Согласно техническому описанию на детектор Холла, пределы измерения датчика Холла 49E ±1500 Гс с линейным участком от −1200 до +1200 Гс., а чувствительность датчика примерно 2,9 мВ/Гс. Рассмотрим график зависимости напряжения на датчике Холла от величины магнитного поля:

График зависимости напряжения на датчике Холла от величины магнитного поля

Помните наш первый скетч? Показания, снятые с датчика, изменялись в районе 508..525 отчётов (левая шкала ординат на графике). Если перевести их в вольты, то это как раз около нуля шкалы отсчёта датчика, или 2,5 В (правая шкала). Если мы поднесём магнит одним полюсом к датчику Холла, показания будут меняться от нуля в одну сторону, если поднесём другим полюсом – в другую.

Таким образом, по показаниям аналогового канала датчика Холла можно судить о величине магнитного поля и о направлении магнитных силовых линий.

Ссылка на основную публикацию
Adblock
detector